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ABSTRACT

The progressive break-up of an initially stablgidlcolumn or thread into a
number of smaller droplets is an important dynamjmacess that impacts many
commercial operations from spraying and atomizatibfertilizers and pesticides, to
paint application, roll-coating of adhesives anddgprocessing operations such as
container- and bottle-filling. The progressive thimg of a fluid filament is driven by
capillarity and resisted by inertia, viscosity adiitional stresses resulting from the
extensional deformation of the fluid microstructundthin the thread. In many
processes of interest the fluid undergoing breaksupn-Newtonian and may contain
dissolved polymer, suspended particles, surfactaots other microstructural
constituents. In such cases the transient extealsiiacosity of the fluid plays an
important role in controlling the dynamics of bragk The intimate connection
between the degree of strain-hardening that desedoping free extensional flow and
the dynamical evolution in the profile of a thinifl thread is also manifested in
heuristic concepts such as ‘spinnability’, ‘tacldseand ‘stringiness’. In this review
we survey recent experimental and theoretical dgweénts in the field of capillary-
driven thinning and break-up with a special focashow quantitative measurements
of the thinning and rupture processes can be wsqdantify the material properties of
the fluid. As a result of the absence of exteroatihg, the dynamics of the necking
process are often self-similar and observationthisf ‘self-thinning’ can be used to
extract qualitative, and even quantitative, measuné the transient extensional
viscosity of a complex fluid.

KEYWORDS: Jet break-up; Necking; Capillary thinning; Extemsl rheology; drop
formation.

1. INTRODUCTION

The uniaxial extensional viscosity is a fundamentaterial property of a fluid
which characterizes the resistance of a materiakttetching deformations. For
microstructured fluids, this extensional viscositya function of both the rate of
deformation and the total strain accumulated. Soafe the most common
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manifestations of extensional viscosity effectscomplex fluids are the dramatic
changes they have on the lifetime of a fluid thraadergoing capillary break-up. The
so-called “beads on a string” morphology that depslwhen a jet of a dilute solution
of high molecular weight polymer undergoes capjHdriven thinning is a well-
known example of this phenomenon [1]. The procdsbreak-up is driven by the
action of capillarity, which seeks to minimize tinkerfacial energy of the free surface
of a fluid thread, or ‘blob’, by formation of splheal droplets. This dynamical process
can be very rapid, depending on the compositiotheffluid, and viscous, elastic and
inertial stresses may all be important in resistihg action of capillarity. In this
chapter, we review recent experimental and themmetievelopments in the field of
capillary-driven break-up with a special focus awhquantitative measurements of
the thinning and rupture processes can be usedantify the material properties of
the fluid. As a result of the absence of exterpatihg, the dynamics of the necking
process are often self-similar and observatiorthisf‘self-thinning’ can be utilized to
extract qualitative and even quantitative measaféise transient extensional viscosity
of a complex fluid. However, the temporal evolutiohthe filament profile depends
on the relative importance of viscous and elastist@butions to the stress and the
capillary pressure within the fluid thread. In ard® obtain useful material
information, it is thus essential to understand théco-elasto-capillarybalance in
detail.

1.1 Application Areas

In addition to its use in extensional rheometry progressive break-up of an
initially stable fluid column or thread into a nuertof smaller droplets is an important
dynamical process that impacts many commercial atipers from spraying and
atomization of fertilizers and pesticides, to radlating and food processing operations
such as bottle-filling. The intimate connectionveetn the degree of strain-hardening
that develops during free extensional flow anddiieamical evolution in the profile
of a thin fluid thread is important in a diversenga of free-surface flows and
industrial processing operations such as those siofigure 1.

The retarded breakup of a high-speed fluid jetaiointg low concentrations of
a high molecular weight additive (such as polyethgl oxide (PEO) in this case) is a
well-known example [2] shown in figure 1(a), withgications in drag reduction and
fire-hoses [3]. Food-stuffs frequently contain matu(or synthetic) biopolymeric
‘thickeners’ which result in stringiness. Cutting @kra (a.k.a ‘ladyfinger’) in half, as
shown in figure 1(b), ruptures the cell-walls aptbases the cellular cytoplasm which
stabilizes the formation of a thin thread as the halves are separated. Figure 1(c)
shows the ‘bag-break up’ atomization process ituia fdroplet of diameter 65Qm
(containing 125 ppm of PEQYl ~ Z 10° g/mol) ejected from a nozzle into a high
speed cross-stream airflow [4]. The stagnationquresacting on the nose of the fluid
droplet rapidly inverts and inflates it into a stteed fluid shell, which subsequently
undergoes capillary breakup. The extensional steess the rapidly-stretched fluid
sheet lead once again to thin threads and inteected droplets. The level of fluid
viscoelasticity can thus be used to contdvbplet size and airborne chemical
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Figure 1: Some common application areas that involve vidaste
capillary thinning of a complex fluid; (a) breakap a fluid jet at hig
Reynolds numbeRe 35000, containing a small amount (100ppn
polyethylene oxide sation (reproduced from Boger & Walters, 1!
[2]; from an original image by Hoyt & Taylor, 1977])(biopolymerit
fluid threadsgenerated from the cellular matrix upon cuttingo&ma ir
half (image courtesy J. Bico, unpublished); (c)ymeakup’ of a dropl
being atomized by a higbpeed aerodynamic flow (reproduced f
Romagnoli et al. 2000 [4]); (d) forward ralbating of three aquec
solutions of hydroxyethyl cellulose (HEC) with ieesing moleculi
weight from left to right (reproduced from Fernanebal., Prog. Org
Coat (2001) [5] (e) formation of a beads on a string morphologye
nanoscale following electrospinning of an aqueous piblylene oxid
solution (Fong et alRolymer1999 [6]).
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dispersion. Figure 1(d) depicts the formation e&mstls during a high-speed forward
roll-coating operation (at 152 m/min) with aqueaoautions of hydroxyethylcellulose
(HEC). The thickness, length and lifetime of theands increases from left to right
with the molecular weight of the HEC. Measuremestt®w that the subsequent
formation of a ‘roll-mist’ from breakup of theser#lads is directly connected to the
extensional viscosity of the fluid [5].

Viscoelastic effects can also be important on thiergscale, and high
molecular weight additives contribute to the sisbdf electro-spinning processes [6].
As indicated in figure 1(e), complex morphologies @rise depending on the relative
balances of capillarity (which leads to dropletnfiation) and fluid elasticity (which
tends to lead to filament formation).

The phenomena shown in figure 1 are commonly desdrin heuristic and
poorly-quantified adjectives such as ‘spinnabilititackiness’ and ‘stringiness’ [7].
Additional specialized terms are used in other #&des including ‘pituity’ in
lubricious aqueous coatings, ‘body’ and ‘lengthpirinting ink business, ‘ropiness’ in
yogurts and ‘long/short textures’ in starch progass Other common examples
encountered in every-day life include the spinnafgultra-thin filaments of silk by
orb-weaving spiders, the stringiness of cheesedtyieg of liquid adhesives, splatter-
resistance of paints and the unexpectedly longilifie of strands of saliva.

In each case, the material property embodied irfdiraation and lifetime of a
filament is some specific measure of the transéténsional stress growth function
for the fluid of interest as a function of the stranposed and the strain-rate resulting
from capillary thinning. Visual descriptions of Baexperiments with plant cytoplasm
represent some of the first investigations of flektensional viscosity (oviscidity)
and are described by D’Arcy Thompson (1961). PefiBle summarizes the early
literature in his monograph, and detailed revieviserperimental techniques for
measuring both the transient and steady-state sgteal stress growth for mobile
fluid systems have been provided by Gupta & Srijehand James & Walters [10].
The fundamental governing equations for thesedtetace flows are derived in detail
in the books by Yarin [11] and Middleman [12]. Imet present article we focus on
recent developments in understanding the fluid dyos of the process of visco-
elasto-capillary thinning and exploitation of suftbws for extracting appropriate
measures of the fluid’s resistance to stretchirdjlaeakup.

2. DEFINITIONS AND PARAMETERS

2.1 Background

In a pinching thread, viscous, inertial and ela&iices can all resist the effects
of surface tension and control the ‘necking’ thawvelops during the pinch-off process.
The dominant balance of forces depends on theiwelaiagnitudes of each physical
effect and can be rationalized by a careful dimaradi analysis of the problem. The
results can be conveniently represented in scherfmatn as shown in figure 2.
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Figure 2: The operating space and important dimensionlessmter
for Visco-Elasto-Capillary Thinning and Breakup.

For bulk flows of non-Newtonian fluids the relativeportance of inertial
effects and elastic effects with respect to viscetrssses are characterised by the
Reynolds number, Re=r V|, and the Weissenberg numbewi=/V/I,
respectively. Her& andl| are characteristic velocity and length scalestierflow of
interest andr,h,,/ are the density, viscosity and longest relaxatioe of the test
fluid. Prototypical processing flows can be cortiedsby their location in the back-
plane of figure 2. The relative magnitudes of ii@rstresses and elastic stresses can
also be related by the elasticity numtgire Wi/ Re= A1,/ /r P, which is independent
of the process kinematics and only depends ondiegroperties and the geometry of
interest. For example, extrusion of polymer melsresponds toEl >>1, whereas
processing flows for dilute polymer solutions (suels spin-casting) typically
correspond toEl <<1. Likewise free surface flows of Newtonian fluidancbe
characterised by the magnitude of the Reynolds euralnd the capillary number
Ca=h,V/s (wheres is the surface tension of the fluid), and candmesented on
the horizontal plane of the figure. The slope @fectories in this plane is again
independent of the imposed velocity and correspdadse value of the Ohnesorge
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number, Ol © Cg Re #i3/(rs ), which may also be thought of as the inverse of a
Reynolds number based on a characteristic ‘caypill@locity’ V =s/h,. Other
combinations of these dimensionless parameters asy be used; for example,
studies of high-speed jet breakup are commonly rtegoin terms of the Weber
numberWe® ReCa r \3’/19 . The onset of the bag breakup regime shown indigu
1(c) then corresponds to the condition that thgrethon pressure at the nose of the
droplet ( er/Z) exceeds the capillary pressure in the dror(letZs/R); or
equivalently to a Weber number (based on the drajgeneter)We, = 7 \? Ds 3 8.

Inertialess flows of elastic fluids with a free faoe are represented by the left-
hand vertical plane, and the combined importancela$tic and capillary effects
compared to viscous stresses is measured by ardithensionless parameter which
can be referred to as atasto-capillary numberEc® Wy Ca= /s /fi ,I) . Much less
is known about flows in this plane. Bousfield et [@i3] were the first to study the
nonlinear evolution of viscoelastic fluid jets arshowed that increasing the
elastocapillary number (denoteédtherein) resulted in strong stabilization of the je
More recently, Spiegelberg and McKinley [14] andsRassen et al. [15] have
investigated the effects of change&imon adhesive fingering instabilities.

The three-dimensional interior of the parameteacspshown in figure 2
corresponds to general visco-elasto-capillary flowis worth noting that as interest in
microscale and nanoscale manufacturing intensidied,the characteristic length scale
() of a particular process decreases, the elasticityber and elastocapillary number
will both increase. Non-Newtonian effects in thegassing of complex fluids will
thus become increasingly prevalent.

The relative co-ordinates of a particular proagsgeometry can be specified
by values of{Re, Ca, V\}i. Since all three of these parameters vary with the
characteristic process speédit is preferable to pick a single dynamical vhha(say
Ré and then specify the other coordinates usingnthterial parameter©h andEl.
One final, particularly important, combination ofarpmeters is the ratio
De, © E/Oh= /s ¥3/¢ P)*2, which we define as a natural antrinsic Deborah
numberfor free surface viscoelastic flows since it regar@s the ratio of the time scale
for elastic stress relaxation, to the ‘Rayleigh time scale’ for inertio-capillabyeak-
up of an inviscid jetts = (r1%/s )¥2. Again it is worth noting that as length scales
decrease, non-Newtonian effects in free surfaogsflof complex fluids will become
increasingly prevalent.

2.2 Prototypical Flow Configurations

There are many possible free surface conformatimatsmay be realized during
the thinning and break-up of complex liquids. Ie firesent review, we focus on three
specific geometries that have been studied extelysiand systematically. These
simple prototypical configurations are shown inufig 3 and they may be conveniently
distinguished from each other by the relative magles of the imposed velocily
and the natural or intrinsic speed of a capillagvavin the system of interest; in the
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Figure 3: Three prototypical geometries for studying breakof
complex fluids; (a) continuous jetting instabilitgh) dipping from ¢
nozzle; (c) necking and breakup of a liquid bridge.

case of a low viscosity fluiddh < 1) this is given by.,, (s/r RY2, or alternately,
for a viscous fluid threaddh > 1), the relevant scale \&,, s/, .

The motion of a continuous jet of fluid shown igdre 3@) exiting a circular
nozzle of radiusR, at a velocityV >>V,,, leads to a progressive necking and
breakup as the jet flows downstream. In a drippgrgeriment of the type shown in
figure 3(b) the exit velocity is of the same order the capillary wave driving the
breakup processM V) and leads to the formation of a single hemisuiaéri
droplet at the exit of a small capillary tube oflitss Ry £ Iy (s /r g)¥?, followed
by gravitational drainage and capillary-inducedcpioff. Finally, in the liquid bridge
configuration of figure 3(c), the imposed velocisyzero (following the initial rapid
formation of a liquid bridge constrained betweero teoncentric and axisymmetric
endplates) and the bridge evolves purely underattt®on of viscous, inertial and
capillary forces.

In each case the geometry is simple enough to tenalte to theoretical or
numerical analysis of the time-evolving filamenbfde R(z,) and the flow can be
controlled (at least initially until capillarity kas over) by motion of the end-plates or
by controlling the supplied flow rate. Flows of Neewian fluids in these geometries
have recently been reviewed by Basaran [16]. Thecipal benefit of the third
geometry is that the material element at the nasbywoint or ‘neck’ (shown by the
shaded elements in figure 3) remains located abappately the same location in the
laboratory reference frame; we denote the locusthié neck henceforth by
Rna (1)° R(z= 05k ,}. The fixed Eulerian location of the neck facikist
experimental measurement of the necking dynamiasgusither high-speed video-
imaging or a laser micrometer system.
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2.3 The Transient Extensional Viscosity

Although the dimensionless parameters discussed2ii provide useful
information for comparing different fluids and flogeometries, the Weissenberg
number and Deborah number do not provide accuratesunes of the effective elastic
tensile stresses that can develop in a fluid thredwch is necking down and
elongating under the action of capillarity. Matheicely, such flows are ‘strong’
extensional flows which result in large moleculafatmations of the underlying fluid
microstructure [17]. The dominant flow in the slendfluid column is typically
irrotational due to the absence of solid surfacghidh usually result in ‘no-slip’
boundary conditions and associated vorticity getimra For flexible polymer chains
this deformation leads to large elastic stresdewelconsider an initially cylindrical
fluid element of characteristic side= R, then the strain rate is given by:

e(t):-ng(t):- 2dln(R(t)/ R’), .......... 1)
R dt dt

and the total deformation of the fluid element aftfee thread has necked down to a
sizeR(t) that is given by the logarithmic or Hencky stral8];

e(t)= ge(tgdt &2n(R/R(Y). @)

The actual stress in the filament can, in prirgijle determined by numerical
integration of a chosen viscoelastic constitutigeagion with the known deformation
profile e(t). In many of the similarity solutions obtained foapillary thinning of
slender fluid filaments (discussed in detail belmw84), the midpoint of the fluid
filament is found to evolve according to a relasbip of the functional form
Riid (t) =C(% - Y™ whereC andm are parameters determined from the analysis. For
example: for the Newtonian fluich= 1; for a Second Order Fluith = 2 and for a
power-law fluid the parameten is the power law exponent The strain rate and total
Hencky strain of the fluid element at the mid-plane then given by the expressions:

_ 2m _ R,
emid(t)_(tc- 0 and gt)=2In 70(%_ o 3)

It can be seen that both the fluid strain rate thedotal strain therefore diverge as the
breakup event approaches. It is thus possible abepthe extensional properties of
complex fluids under conditions far from equilibritand far beyond those attained in
conventional torsional rheometers.

Following early disappointing attempts at corfieigt measurements of the
extensional resistance of polymer solutions in edédht elongational devices
(summarized in [10]), it is now recognized that thetensional viscosity of a
viscoelastic fluid is best represented as a functibthe entire deformation history
experienced by the material.

To illustrate this, we consider for simplicity tparticular case of the Oldroyd-
B model [19] and a constant deformation ragg)( The radius of a fluid thread (in the
absence of surface tension) decreases accordirig,iqt) = Rexp(- &t 2. If the
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initial stress difference in the thread at tie 0 is denotedDt ) :g‘ Szt °,,,,r) , then
the evolution of the tensile stress difference lwafound analytically and is given by:

2h,6,

_ 40 G . ;

ton= thut @ 0.5Wi) exp(2 (- 0.3wi )+ T I 4)
_ L0 G ) h.e

Low =0, +7(1+:I/Wi) exp(e (& Iwi)) Wy (5)

where G =h,// is the elastic modulus, the Weissenberg numb®iis /e, and the
Hencky strain i®= gt. After incorporating the additional Newtonian sge
contribution from the solvent, the extensional strgrowth function, or equivalently
thetransient uniaxial extensional viscositsan then be represented in the form:

(I‘p,zz' t p,rr)
&

Results are also often represented in dimensiofbess as a transient Trouton ratio
Tr=hg(ent)/hy .

For small Weissenberg numbeWi(< 0.5) the last terms in equations (4 - 5)
dominate; however atVi = 0.5, the coil-stretch transition leads to untbech stress
growth in time. It can be seen from equation (%) the radial stresses typically decay
with strain @ for all Wi; howeverfor Weissenberg numbewi > 0.5 the axial tension
in a fluid filament grows without bound. It is th&gress growth that results in the
formation of fibrils and connecting ligaments olvsef in the images of figure 1.

hE(E’O,t)O (tzz'f rr): 3/73+
&

Ultimately this stress growth is truncated by firate extensibility of the
molecules and can exceed viscous contributions @osthess by many orders of
magnitude. This limit can be described by molecutardels such as the FENE-P
dumbbell model obtained from kinetic theory [20] amdadditional finite extensibility
parameter denotet? herein. The axial stress growth féfi >> 1 is then truncated at a
maximum value given by:

Lor ma=h €0 =20 g7 (1-08wWi.). L 7

Finally, it can be seen from the expressions altbaefor Wi< 0.5 the effects
of any initial stresses decaie. the fluid exhibits a ‘fading memory’ as normally
expected for a viscoelastic fluid; however, W 0.5, the initial axial stress does not
decay but affects the flow at all future times.dTisi particularly important in the study
of jet breakup — the effects of an upstream shieav for example in a pipe and
nozzle) can significantly modify the dynamics ofékup. The role of pre-shear on
extensional flow is not well understood yet and bialy been considered by a handful
of authors to date [21-23].

3. THE STABILITY OF FLUID JETS AND THREADS

Our understanding of visco-elasto-capillary thimpirand break-up has
advanced significantly over the past 10-15 yedmgugh the combination of careful
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experimentation, numerical simulations of the goirey equations and mathematical
analysis of the stability of these equations. Safthe many papers in the area are
collected in tabular form in table 1. This listnist intended to be exhaustive but rather
highlights some of the key studies.

As we discussed above, the number of material peteas influencing the
evolution of a fluid thread or jet can be ratheméa (cf. figure 2) and systematic
studies have therefore focused on specific parthisfparameter space. In table 1 we
indicate which contributions to the total force drale on the elongating thread
considered in each study control the dynamicalweian and necking of the thread. In
the present section we focus on experimental aedréfical studies of the linear
stability of jets and liquid bridges (denoted by LStable 1). In 84 we proceed to
consider the nonlinear evolution of fluid threadsotigh the use of self-similar
solutions to the equations of motion, as well a®ugh simpler but approximate
‘local’ analyses. These studies are denoted raspicby an SS and L in table 1.

3.1 Linear and Nonlinear Stability of Jets

It has been known since the 1960s that the evolufoviscoelastic fluid jets
may be substantially different to common experienith Newtonian fluids. Linear
stability analysis [33] shows that the jet is lesable to perturbations than the
corresponding Newtonian viscous jet (because thd fitresses that resist disturbance
growth are always retarded behind the instantandefesmation). For weakly elastic
fluids this can result in jet breakup lengths tig shorter than those observed with a
Newtonian fluid [39]. However, for highly elastiolstions containing high molecular
weight additives, nonlinear effects can rapidly elep in the extensional flow that
evolves in the neck region and stabilize the brpakocess. This leads to significantly
enhanced jet breakup lengths and the developmemibedds-on-a-stringnorphology
[1]. Bousfield et al. [13] simulated the viscoelasixtensional flow of a free jet using
the Oldroyd-B model and showed that the elastiessgs grow exponentially in the
neck as a result of the ‘squeezing’ flow induced thg ever-increasing capillary
pressures/ R (t) . They also showed that the evolution in the filatpgrofile can be
accurately described by a simplified one-dimendieatof slender filament equations.
This greatly simplifies the analytical and compiata&l complexity of the task. The
resulting one-dimensional equation set can alsoctweveniently represented in
Lagrangian form [37] and a number of similarity \g@ns incorporating capillarity
and viscoelasticity as well as additional effedtsnertia and finite extensibility have
been studied by Renardy [36]. The structure andeldpment of the associated
methodology is summarized in last yeaRBeology Reviews 20040] and discussed
further in 84 below.
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TABLE 1 IN SEPARATE FILE
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An important result from numerical study of thecking process is the
possibility of anelasto-capillary balancein the necking thread. The exponential
decrease in the radius (and concomitant expondntiegase in the capillary pressure
in the cylindrical threadpcap s/ R( t)), results in a constant strain rate (from equation
(1)) and correspondingly an exponential growthhie &xial tensile elastic stress (from
equation (4)). Detailed analysis shows that ttanrfént radius evolves in the form:

13
Rne (t) » —G eXIO(' t/ 3') €mid =~ 2 O = E ---------- (8)
R s/R Ria dt 3/

The necking process thus corresponds to a homogenelongational flow with
Wi=/ems =2/3. Schimmer and Tebel [41] used this principle to tivate
construction of a free jet elongational rheometer.

The elasto-capillary balance and resulting expdakstress growth obtained
with a quasilinear model such as the Upper-Condebtaxwell or Oldroyd models
precludes the possibility of filament breakup [42ltimately we expect two additional
effects to modify the dynamics; (i) fluid inertianc (ii) finite extensibility of the
dissolved macromolecules. The interplay of the$ecef governs the tendency of the
elongating and thinning fluid thread to form sateldroplets. These smaller droplets
are of great importance commercially as they affieetdelivery of inks and fertilizers
in spraying and inkjetting operations. Although tieneral principles controlling this
process are now well known, a quantitative and iptied theory or analysis for
viscoelastic fluids remains lacking at present.

Simulations [13] of the size of the primary ands®tary droplets resulting
from the breakup of a Newtonian fluid jet as a fioww of the dimensionless
wavenumberk =p R/ L of the disturbance are in quantitative agreemeith w
experimental data as shown in figure 4(a). As tlevemumber of the disturbance
increases, the sizes of both the primary and sexgndiroplets decreases
monotonically; however a secondary droplet is abvalyserved.

For the case of a dripping nozzle, Ambravaneswatasl. [43] used a 1D
slender-body approximation similar to that in [18] develop a complete operating
diagram for the formation of satellite dropletstarms of the Weber number and
Ohnesorge numbers. Figure 4(b) shows that by daskfice of the fluid viscosity (or
Ohnesorge number) it is possible to optimize thegeaof dripping velocities (or
Weber numbers) for which no secondary dropletdaraed.

For polymeric jets there have been few quantitatimmparisons of theory and
experiment. Christanti & Walker [44, 45] recentlgtudied the droplet size
distribution and jet breakup length for a serieagfieous polyethylene oxide (PEO)
solutions. The jet was periodically excited usingiezo transducer element and the
corresponding evolution of the jet was captureshgigiigh-speed video as shown in
figure 5. As the molecular weight of the PEO solngreases, and elastic stresses in
the fluid become increasingly important, the je¢dkup evolves from the classical
Rayleigh mode (which leads to formation of a priyndroplet together with small
secondary droplets as shown in the top frame) wsvdhe ‘beads on a string’
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(a) Jetting (b) Dripping

Figure 4: Formation of satellite drops during breakup of amdmiar
liquid thread; (a) Dimensionless droplet sizes lgstanith initial je
radius Ry) of the primary and secondary droplet size in kupaof ¢
continuous Newtonian jet are shown as a functiordiofensionles
wavelength of disturbances =p R/ L. Reproduced from Bousfielel
al. INNFM 1986 [13] (b) operability diagram for a dripping noz
showing the range of Weber numbeus Which a satellite drop is/is
formed for different Ohnesorge numbers. Reproduc&dm
Ambravaneswaran et &hys. Fluid42002) [43] .

morphology shown in the lowermost frame. The wawelper of the most unstable
mode is clearly decreased with increasing fluidtiiy.

The authors also developed a phase diagram shothi@ range of fluid
elasticities (as characterized by the longest omf@ relaxation time) and
wavenumbers for which satellite droplets are elatéd (figure 5(b)). As the fluid
elasticity increases, the range of wavenumbersvfoch the viscoelastic jet is able to
suppress drop break grows rapidly. In dimensionless, the elasticity of the
polymer solutions is characterized by the intriB&borah numbebe, defined in §2.
For a fluid jet exiting a nozzle of radius 0.25mtime fluid with measured relaxation
time of 05 ms (0.1% '30° g/mol PEO) corresponds to a Deborah
numberDe, =0.97. For Deborah numbers below unity, elastic effebiss do not
stabilize the jet and Newtonian-like breakup dyramare observed. Very similar
stabilization effects and suppression of satelliteps are also seen during the pinch-
off of PEO solutions dripping from nozzles [46, 47]
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Figure 5: Effect of viscoelasticity ofet break up; (A) evolution in j
profiles due to a forced disturbance with wavelbangfd = 4.5; (a) .
Newtonian 50/50 water/glycerol mixture; (b) 0.3%0k8/mol PEO; (¢
0.1% 300kg/mol PEO, (d) 0.05% 1000kg/mol PEO, asd(Q.08%
5000kg/mol PEO. Flow direction is from left to righnd the image si
is 20 mm x 2 mm; (B) Stability diagram showing citiaths which forn
satellites ( ) and conditions which form no satellites)(as a functio
of fluid relaxation time and wavelengthf disturbance. Reproduc
from Christanti & Walker,). Rheal 2002 [45].
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(9)

(h)

Figure 6: Numerical simulation of the formation and coalesecio
beads on a string in an Oldroyd-B fluldg, = 212.1;0h = 1.41; (a)f)
filament profiles at dimensionless times (scalethwlie Rayleigh tir
tr) of t = 56.6, 141.4, 212.1, 353.6, 381.8 and 42@B;axial velocit
profile as a function of axial positionz( R); (h) dimensionless tor
axial force in the filament (scaled with surfacesien sR,) as
function of axial position. Reproduced from Li & iktelos, Phys
Fluids, 2003 [48].

Recent advances in numerical methods that retaim f@solution descriptions
of the free surface can now enable the nonlineaaxhjcs of viscoelastic jets to be
simulated very accurately as shown in figure 6.al (1%) disturbance is supplied
to the initial jet profile and the one-dimensior@lolution equations for a slender
Oldroyd-B filament are integrated forward in timé8]. The simulations show the
growth of a large ‘primary’ drop and a smaller ‘sedary’ drop. Of particular interest
are the velocity field and stress distributionhie filament, which are shown in figures
6(g) and 6(h). The velocity profiles show regiofiiomogeneous elongational flow in
the threads (in whichv, = e,,,z) interconnected by quasi-stagnant regions in the
drops. A detailed analysis of the force balancéhinthread shows that the net axial
force is not identically zero as initially assumacearly theoretical analyses [34, 49]
but in fact decays in time with the same exponéulgzay rate as the radius of the
cylindrical regions. The contributions of capillapyessure and elastic stress in each
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axial segment of the beads-on-a-string morpholagy different and depend on the
entire evolution history of the respective fluickmlents. Consequently, small force
imbalances and the slow drainage of fluid from thyindrical threads into the
interspersed droplets can result in a prolongedesoance phase as shown in figure
6(a - f). Although the similarity between the expental observations in figure 5 and
numerical simulations is striking, a quantitativeonparison between jet
breakup/atomization experiments employing a wetlrabterized model polymer
solution and numerical simulations with predeteediphysical parameters has yet to
be performed.

The simulations in figure 6 are appropriate forilatd solution of infinitely
extensible macromolecules (which can be modeledHaskean dumbbells and
described by the Oldroyd-B constitutive equatidmwever in a real fluid, at long
times the finite extensibility of the molecules mbgcome important. Renardy [36]
and Fontelos & Li [50] have shown that in this limiself-similar necking process (see
84) develops in which the radius no longer decay®eentially, butinearly in time
with R, »(s/2n¢)(t.- t) where A is the steady elongational viscosity afdis
the critical time to breakup. Interestingly it muhd [50] that the precise value of the
numerical front factor in this relationship depends details of the specific
constitutive model, and this suggests that studieglasto-capillary thinning and
breakup might provide sensitive probes of the esiteral rheology of complex fluids
at large strains.

A recent theoretical stability analysis [35] hdsoashown that the elongated
beads-on-a-string structure shown in the last fravhdigure 6(a) may itself be
unstable to a new mode of inertio-elasto-capiliagtability. Numerical calculations
showed that the neck region connecting the prindmgplet to the elastically-
dominated cylindrical ligament is unstable to snp&liturbations, leading to an elastic
recoil and formation of a smaller secondary droptetnected to the main droplet by a
finer-scale ligament. This structure is then itsafistable to perturbations and this
process ofiterated stretching’repeats indefinitely (for an infinitely extensibileid
model such as the Oldroyd-B model), with a welliged recursion relationship
between the size of each generation of beadstdteiastabilities in fluid threads of
very viscous Newtonian fluid€Oh 1) have been observed previously [51], but due
to the lack of a wavelength selection mechanismitistability does not lead to well-
defined arrays of beads. Although hints of thisaited process have been noted in
some careful photographs of polymeric threads #3,an iterated elastic instability
has yet to be observed definitively in experimeavits polymer solutions. As noted by
Chang et al. [35] fluid inertial effects are alsoportant in this iterated process; in
order to ensure that the growth rates of the bgalieh scale witht;') are faster than
the thinning rate of the primary elastic thread iehis given by (3/)!). A high
molecular extensibility is also required in orderpgermit repeated stretching/recoil
and multiple generations of droplets. Iterated tehiag thus requireOh<<1,
Dg 31 and > ®¥ and is most likely to be observed in experimenith dilute
solutions of very high molecular weight flexiblelymers in a low viscosity solvent.
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3.2 Static Stability of Liquid Bridges

In addition to the infinite jet, the liquid bridgeonfiguration shown in figure
3(c) has become a common geometry for experimstudies of necking and break-
up of elastic fluids. In such a configuration, tigéd end plates impose no-slip and no-
flux boundary conditions in the radial and axialedtions respectively. The latter is
straightforward to impose through a constraintixéd volume and/or constant length;
however the former boundary condition can not bgragented in a simple one-
dimensional formulation of the type discussed ir1§33]. Consequently studies have
focused instead on the quasi-static stability oé thiquid bridge; i.e. which
configuration minimizes the interfacial energy dfetfluid; a single deformed
(typically non-cylindrical) column or two topologilty-distinct fluid blobs with one
attached to each end plate? Originally studiedlateRu [52], modern studies were re-
ignited by the work of Gillette & Dyson [53]. Thédrature in the area is extensive
because the geometry is relevant to the ‘float zpraress in crystal growth and the
perturbative effects of gravity limit the uniformitand size of the float zone (see
Coriell [54] for further discussion and the reviewMeseguer et al. [55] for details of
the present state of knowledge in the area).

The static stability boundary for a fluid droplef wolume V , bounded
between two plates can be represented in the fhawrsin figure 7. The aspect ratio
of the liquid bridge is L =L/R, and the dimensionless volume of the bridge
(compared to the volume of a right-circular cylinds =V,/(pR2L,). For =1
the maximum statically-stable length of a fluid woh is Lg,.=2p as first
determined experimentally by Plateau [52] and tetcally by Rayleigh [56].
However for smaller or larger dimensionless voluntes maximum length can be
smaller or larger as shown in the figure. The $itgihoundary is comprised of three
distinct segments (lines OD, DC, CO). The sketabiebridge shapes inset in the
figure show the shape of the bridge at the losgtaidility on each branch.

As noted in Gaudet et al. [57] thread break-up erpants typically start with a
cylindrical configuration and the total physicalwme is held constant as the bridge is
elongated axially. In the quasi-static limit of yeslow displacement, this corresponds
to a sequence of equilibrium states (denoted bwlzscsipt S) which follow a
hyperbolic trajectory through figure 7 (shown bye tdash-dotted line) given by

s=Ly/Ls. The bridge breaks when this hyperbola intersebts minimum
volume stability limi{the lower right-hand part of the stability cungtjown in figure
7. This critical value will therefore depend on ih&ial aspect ratio (or equivalently
the initial volume) of fluid column used. If we d&e this functional relationship by
Lsmead o) then the Hencky strain at break i pea=IN(Lspeallo). AN
interesting question that does not appear to haee bddressed to date is what is the
initial aspect ratio that maximizes this strairbteak? Preliminary calculations suggest
that it is a hyperbolic trajectory with, 0.16, which intersects the minimum
volume stability limit at Lggea 0.57 corresponding to a stretch of
€ meax =IN(0.57/0.16§ = 1.2°. This trajectory also achieves a tangency conlitio
with the lower left-hand part of the stability cerv
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(@)

stable

(b)

Figure 7: Stability diagrams for static liquid bridges comthbetwee
coaxial circular disks; (a) global stability diagra showing
dimensionless volume as a function of aspect ratib = Ly/2R, for
Bond numbers oBo = 0 (- — —) andBo = 0.1 (—. The bridge los¢
stability on the lower branch to a bifurcation iteo identical Bo = 0)
or dissimilar size dropBp

axisymmetry; (b) Typical experimental data for Bomimber
O£ Bo£1. Both figures reproduced from Slobozhanin et Rihys
Fluids (1993) [58].
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If there is a gravitational body force acting alahg axis then this causes the
bridge to ‘sag’ and also affects the stability baany [58]. Because of its importance
in silicon crystal growth, this effect has beensidared in some detail. Gravitational
effects are parameterized by the Bond nuni®er Dr gi /s and even foBo = 0.1,
the domain of static stability decreases substantées shown in figure 7(a). The
resulting shape of the liquid bridge can be evaldiatsing a perturbation analysis for
Bo << 1 [59, 60]. A bifurcation analysis can also bgsed [61] for small shape
deviations and for small values of the Bond nuntbevaluate the shift in the stability
locus and shows that the maximum aspect ratio fven volume of fluid is:

Ls max @20 (1 (3)4/3 Bo™® +( ]))+ ..... for Bo<<?,, e 9)

However, for larger perturbations the solution maestfound numerically. The results
of a series of detailed theoretical calculationd amcrogravity experiments are shown
in figure 7(b).

Most recent experimental studies of capillarytiig and breakup in polymer
solutions utilize plates of radiukE R, £ 6 mm and fluids with surface tensions in the
range 30£ s £ 70 mN/m; Bond numbers are consequently of order 01D~Axial
distortions in the initial liquid bridge shape aheis expected to be quite pronounced.
The axial extent of a liquid bridge can be extenbdgdn external axial flow [62], a
yield stress in the fluid [63] and also by bulksarface viscoelastic stresses (cf. figure
8 in [64]). Of principal interest to the presentieav is the effect of dynamical stresses
induced by axial stretching of the liquid bridge tme stability of the column.
Experiments [65], stability analysis [66] and nuioak calculations [57, 67, 68] show
that this effect can be substantial. For a givdoeraf the dimensionless volume, ,
the aspect ratio at break-up, or equivalently tital taxial strain,e, = In(Lb,eak/Lo) ,
appears to increase monotonically with capillarypnber beyond the quasi-static limit
es( o) ; however there is no simple analytic theory tocdiee this stabilization. This
dynamic stabilization of a liquid bridge has retgieen proposed as the basis for a
‘nano-rheometer’ [69].

If the imposed endplate deformation increases mepially with time then
measurement of the force exerted by the elongditingd column on the endplate up
to the point of break-up can be exploited to priffgetransient extensional viscosity of
the fluid. Preliminary experiments of this type wererformed by Kréger & coworkers
[65, 70] in a Plateau tank (containing a neutraisity fluid) and also in microgravity.
Unfortunately inertial effects in the outer fluiché limitations in the duration of
microgravity time prevented large strains from lgeachieved. By shrinking the size
of the endplates (to minimize gravitational eff¢casd through careful selection of
force transducers and radius measuring devicesh duansient elongational
measurements are now possible in the laboratongitiment stretching extensional
rheometerswithout the need for reduced gravity environméntdeast for fluids with
viscosities greater than approximateély, 1 Pa.s) . Such instruments are beyond the
scope of the present discussion but are reviewddtail elsewhere [71].
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4. DYNAMICS OF NECKING THREADS AND EVOLUTION TO BRE AK-UP

In this section we focus on recent studies ofcdygillary-thinning and ultimate
break-up of fluid threads far beyond the regimeninich linear stability results are
expected to be applicable. This field has beergomated over the past fifteen years by
the discovery of similarity solutions, which ardistor slender threads all the way to
— and, in the case of viscous Newtonian fluids,nelveyond — the singular point of
break-up. Many of these developments are discussadtail in the excellent review
of Eggers [64] and the reader is referred thererfathematical details of the analyses
for viscous and inviscid Newtonian fluids. Simitgrisolutions have also been
discovered for the case of viscoelastic fluidsgtthithrough the studies of Renardy
[36, 37, 42] and have also recently been revieweBRHheology Reviews 20q40].
What is perhaps less clear is how this plethoraxpfessions are inter-related or how
they may be exploited by the rheologist to measnagerial functions and we thus
focus on these issues here. Similarity solutionsth® one-dimensional radially-
averaged form of the governing equations provideressions for the velocity field
and shape of the fluid thread which are valid nay dor small perturbations to an
cylindrical configuration but also for large didbances that ultimately lead to a finite
time singularity (at a time we denote generically henceforth) and a topological
bifurcation of the filament into two distinct regi®. The interconnection between the
numerous published similarity solutions can beesented in graphical form as shown
in figure 8.

The relevant similarity solution for a particulaxperimental configuration
depends on the relative magnitudes of the viscdlagnp inertio-capillary and
viscoelastic time scales denoted=3,Ry/s , tr = (rR3/s )’/2 and/ respectively. The
earliest studies of capillary-thinning for an imitd thread or sheet [24, 25]
(corresponding to potential flow (PF) witbh << 1, De, << 1) show that close to
breakup the minimum dimensionless thickndsg, = R,.({)/ R decreases as the
breakup event approaches with a power-law of thenfd,;, ~((t.- t)/tg)*".
Conversely, for a viscous Newtonian flui@dh{>>1, De, <<1), the similarity solution
obtained to the Stokes equation [27, 72] and awai®gumerical simulations [73]
show that the thread breaks linearly in time; ahd midpoint radius decreases
according to

Rnin (1) _ s 4 oL-t
in ® ———=0.0709 — -t 0.0700h e 10
e’ R nr & F " (10

Later analysis has shown that this solution is amg of a countably infinite
set; however all the other solutions are less stéblperturbations [28]. Eggers [26,
64] showed that there is another important ‘unigksolution’ which incorporates
viscous, inertial and capillary effects in the rniagkfilament. We might expect this
solution to be appropriate when the Ohnesorge numibecomes Oh»1;
corresponding to length scalés~ /#2/(sr ). When the expression for the thinning
rate of the neck in this inertio-visco-capillary/@) solution is evaluated, it is found
that it only differs from the visco - capillary (Y@&xpression (equation (10)) by a
numerical coefficient (as indicated in fig@¢ and the neck radius again decreases
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FIGURE 8 INSERTS HERE
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linearly in time (although it should be noted thmathe IVC solution the location of the
neck also translates slowly in the axial directizrhiereas in the VC solution it is
stationary). The fluid inertia does not appearhia &xpression for the necking rate
because velocities are very small near the neqgbimgt. However at greater distances
from the neck, the velocities become much larget te I1VC solution is strongly
asymmetric, in contrast to the symmetric VC solutiBxperiments and finite element
simulations have shown the progressive cross-aoget the inviscid PF solution to the
IVC solution as viscous effects become importadf,[and also from the symmetric
VC to asymmetric IVC solution as the velocitiestie neck diverge (according to
equation (8)) and inertial effects become increglgirmportant [75, 76].

On very small length scales, additional forces bezdamportant and these have
also been considered. It has been shown [29, &Tullimately viscous effects in the
surrounding fluid become important (even if theesttuid has a viscosityr, <<#,)
and although the filament neck still decreasesaliyewith time, the shape of the
filament in the neck region becomes conical andrsgtric. If the viscosity of the
outer phase is sufficiently large, analysis showa the symmetric VC solution may
crossover directly to this viscous-viscous balameighout ever displaying the
‘universal’ IVC solution [29]. Interestingly, it Isabeen noted very recently that in the
case of an inviscid inner fluid core surroundedabyiscous fluid fr <<A,) that self-
similarity breaks down because the necking ratbéénnviscid thread is faster than the
time scale required any for surface reconfigurafié8], and the thread never forgets
the initial experimental conditions.

Recent experiments [79] have shown that similas@iutions to the governing
equations of continuum mechanics are valid downetoarkably small length scales of
0O(10 nm); however ultimately an additional lengthale¢ corresponding to the
wavelength of natural thermocapillary waves on ftheerface, I ~ (kgT/s )V2
(typically a few nm) becomes important. Beyond iisnt, the additional fluctuating
stresses in the momentum balance must be consid@dgédand these modify the
necking so that the minimum radius varies with #wuare root of time from
singularity.

When elastic effects become important, the dyonantf necking change
significantly due to the additional elastic stressd®t grow exponentially with the total
strain in the fluid thread. For the Maxwell/Oldrefd model this leads to an
exponential decrease in the thread radius as weeistied above in 83 for the case of
viscoelastic fluid jets. The crossover to this titasapillary balance is to be expected
when the viscoelastic time scalf) pecomes of the same order as the visco-capillary
or inertio-capillary time scale, and this crossolias been observed in both numerical
simulations [13, 34, 49] and experiments [46, 4AJltimately, finite extensibility
modifies this solution and the precise form of tweresponding similarity solution
then depends on the relative importance of inentid also on the precise form of the
constitutive model [36, 50]. The additional congtite parameters arising from
viscoelastic constitutive models preclude a coramnirepresentation on a two
dimensional plot such as figure 8. Two importamiit$ can be noted however;
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0] If the extensional viscosity approaches a camiswalue at large strain rates,
then the corresponding tensile stress increasearlinwith strain rate and the fluid
acts like a highly anisotropic Newtonian fluid tade[34, 50]. As noted, in 83, the
thread then necks linearly in time according to:

hmin »{s/(ZhEF{))}(tc' t): 0'5( Oh 1/-“2 )t oo ey (11)
where Tr, =Ag /h, is the limiting value of the Trouton ratio at largtrains and
Weissenberg numbers. The precise value of the ricahdront factor depends on the
specific constitutive model [36, 50]. Large Trouteaios dramatically retard the
thinning compared to the equivalent Newtonian \isapillary solution given by
equation (10). For intermediate levels of extersidghickening, however, the filament
may belessstable than the corresponding Newtonian fluid,aoee the elastic recoll
and unloading of a stretched filament accelerdtesldcal decay in the neck region
[80]. In either case, the filament remains sleratet the most unstable modes are long
wavelength disturbances. Recent molecular dynarsioaulations with bead-rod
chains show a similar gradual thinning and cohefiitere [81].

(i)  Conversely, if the extensional stress is faed at large strains (so that the
elongational viscosity decreases) then the threay fail purely through an elastic

mechanism with capillarity playing no role [36, 4@} this limit the usual energetic

arguments that preclude short-wave length distudsin the presence of capillary
curvature terms are not relevant and so the pdissiof elastic-like rupture events (of

the kind reviewed in [82]) is to be expected. Th&s been observed in numerical
simulations of filament thinning using the Papaasisiu-Scriven-Macosko (PSM)

integral model [83]. Although qualitative obseresi$ of rupture events have been
made in numerous elongated polymer samples, caosfparisons of numerical

simulations with high-speed video imaging obseoradj or attempts at directly

connecting the dynamics of rupture with the formtbé tensile stresses in the
underlying constitutive model, have yet to be cdesd.

5. CAPILLARY BREAK-UP EXTENSIONAL RHEOMETRY

The similarity solutions to the equations of motidiscussed above show that
the minimum radius of a fluid filament undergoingpdlary-thinning (or ‘self-
thinning’) evolves in a well-defined fashion wittdastinctive dependence on time and
a numerical front factor that contains materialgendy information. This suggests that
observation of visco-elasto-capillary thinning itersler filaments might provide a
good basis for an extensional rheometer. This e first employed by Schiimmer
& Tebel [41] using a high-speed jet configuratitwever Entov & coworkers [84-
86] were the first to consider using the configiamratof figure 3(c) in which a liquid
bridge is stretched beyond its Plateau stabilityitliand then dynamically evolves
under the action of capillary, viscous and/or édastresses.

In principle, the axial profileR(z,) of the evolving filament can be digitized
and analyzed; however, close to break-up, the Iprafianges rapidly in the necked
region and high-speed video may be required. thige convenient to use a laser
micrometer or other optical device to measure tliygbe midpoint radiusR;,(f) of
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the neck. Suitable non-contact laser profilometrgtiuments have been developed
commercially for the wire-gauging and fiber-spirgninindustries; common
manufacturers include Omron, Keyence, Zumbach aitdtd§o. Typical devices may
have a spatial resolution of 10 um and samplingsras fast as 10 kHz or more [87].
By monitoring the rate of necking and comparing tmeasurements with the
appropriate theoretical model, one can then extraeblogical parameters that
characterize the transient extensional properfi#iseotest fluid.

Experimental measurements always enable the degtion of the critical
time to break-uptf); and for many industrial operations (such asbpetakup, spray
formation and atomization) this is the key parametk interest. In additionthe
measured evolution in the neck radius can also dneverted into anapparent
extensional viscosity functiofe .pp(€) . Because the forces acting on the filament
select a self-similar balance, the unknown visamugiscoelastic stresses are in quasi-
static equilibrium with the capillary pressure (gded fluid inertia is not important,
so thatOh 1). Using the definition in equation (1) we obtain

_Dt _s/Rua(t) _ S
P o0 = Emid Ehid - 2dR i (1)/ a0 12)

In general, both the strain and the strain ratecheaging as the thread necks and it is
thus proper to refer to this as apparent extensional viscositffhe material function
defined in equation (12) is, however, the relevam for studying and understanding
commercial processes involving jet and thread hneak is also worth noting that in
addition to serving as an extensional viscosityekat, numerous recent studies have
shown that a capillary thinning and breakup dewie@, under certain conditions,
measure the true extensional viscosity. Just asonventional torsional rheometer, in
order to extract values for specific material pagters it is necessary to select an
appropriate constitutive model that can be regresse¢he data. A diagnostic guide of
the most commonly-observed modes of capillary tingrand break-up is shown in
table 2, and the rest of this section focuses diseussion of the different modes of
thinning that can be observed.

5.1 The Force Balance on a Slender Filament

The expected form of the break-up profile can b&ioed from a simplified
one-dimensional form of the force balance on thenihg filament. In the limit of
vanishing inertial effects, the governing equatioas be integrated once to give a set
of equations describing the forces acting on omeedsional Lagrangian fluid ‘slices’.
A detailed discussion of this approach and the eotion with inherently one-
dimensional Cosserat models is given in [64, 88]Lagrangian formulation of the
governing equations for fiber-spinning in the altgeaf surface tension and subject to
a constant axial force is discussed by Yarin [hbjvever, the appropriate system of
equations for capillary-driven breakup of a viseséc fluid thread with a time-
varying tensile force was first discussed and aeayby Renardy [37]. It has been
shown that these one-dimensional equations canraety reproduce full two-
dimensional, time - dependent, simulations wbitith the Newtonian and Giesekus
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TABLE 2 INSERTS HERE
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constitutive equations [80]. As originally formudal the equation derived by Renardy
is written in terms of a Lagrangiatretchfor each axial slice of the column defined
as:

S(%h°17#2=R/ Read X, 13)
where z(Z, ,t) denotes the Lagrangian position at titngf the one-dimensional fluid
‘slice’ located originally at axial positionZ, at time t,. In experimental
measurements of the midpoint radius or in digitizédeo images of liquid bridge
shapes as a function of time, the radial proﬁl(ez(z, J I) is the primitive variable.
If the stretchS is eliminated from the slender filament equati@ing equation (13)
and the equation is extended to incorporate trecsffof higher order axial curvature
terms [64] and also an axial gravity field=-g ,we obtain the following stress
balance:

R _g 2 1R
S

,UR2 R ﬁ , + tp,zz't prr
.S 1 . RRu roR2 Zy e (14)
R 5 172 32 7 Rz
1+ (R9 1+ (R¥

whereR= R(z,} and the terms on the right-hand side represespertively, the net

viscous extensional stress, the non-Newtonian leerstress difference, capillary
pressure arising from radial and axial curvaturé gravity. This equation can then be
combined with algebraic or differential equatiorsr the axial and radial stress
components that are obtained from a particular tdatige model. The resulting

equation set can be then be solved analyticallpumerically. The net force in the
filament is not zero but is independent of spapiasition (i.e. the force along the
filament is constant at any instant in time); itncthus be found by an integral
constraint along the length of the evolving fluidiumn. Renardy [40] outlines a
number of solutions that are valid in the limit tthhe last two terms capturing the
higher order axial curvature and gravitational bdoice acting on the filament are
negligible.

An even simpler zero-dimensional solution is possible if a further
simplification is made: the fluid thread is appmogited as an axially-uniform
cylindrical column of constant radiuR,,4(t) which is necking down under the action
of a capillary pressur@cs, =S/ Rmia(f) . The fluid ‘blobs’ at either end plate serve as
guasi-static reservoirs which soak up the fluidirdrd into them from the necking
region. They also alleviate the no-slip boundarydition which would otherwise
induce a radial shear flow near the ends of thallgetontracting fluid thread. The
line tension acting at the junction of the cylimaddi surface and spherical blob then
results in an axial forceF,(t) =2ps Rma(t). Substituting these expressions into
equation (14) and neglecting the asymmetric drifarge of gravity results in an even
simpler approximate stress balance of the form:
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) 2 anid (t) 5 S
Rnia(t)  dt Ruia( )

It can be seen from this expression that the eapilbressures /R () can be
balanced by a viscous extensional stre¥1€mq(t) and/or by non-Newtonian
contributions to the tensile stress differencehia tolumn. It is this reducezkero-
dimensional form of the force balance that is studied in mdstotetical and
experimental work [34, 87, 89] and is used in afitaj the different analytic
expressions given in table 2.

3hs [toez tod. (15)

In the first row of table 2, we indicate schemdticthe distinctive features and
qualitative profile of the liquid bridge. In thecsd and third rows of the table, the
expected temporal evolution of the midpoint filamehiameter for a number of
constitutive models are shown. It can be seentteafunctional form of the necking
profile can be very different and in each caseiisctly connected to the form of
extensional viscosity predicted by a given constieumodel.

5.2 Elasto-Capillary Thinning of Dilute Polymer Soltions

Perhaps perversely, the elasto-capillary solutamna viscoelastic filament is
easier to understand and validate experimentadly the corresponding expression for
a viscous Newtonian fluid. This is because expemiéfigure 5) and computations
(figure 6) show that the approximation of an axialhiform cylindrical thread is very
good for a strongly-strain hardening fluid suchaadilute solution of a high molecular
weight polymer. In this case the filament radiusajes exponentially at a rate of
(3/)* with a front factor that depends on the elastdizaginumber Ec). Physically,
this corresponds to the radius at which we obtalmlance of the elastic modulus
(G=h,// ) and the ‘squeezing’ effects of capillary presq4@re 35].

A representative series of early experiments witlange of polymer solutions
is shown in figure 9 [90]. In each case, regressmm@ single exponential yields a
characteristic relaxation timé(c). As the concentratiorc) of polymer increases, the
elasto-capillary thinning process slows down a®msequence of the increase in the
material relaxation time. At late times, two effettecome evident; first a systematic
deviation from exponential behavior, arising fromite extensibility; and secondly the
discrete resolution of the laser micrometer canséen in the ‘staircasing’ of the
measured evolution in the filament diameter.

Entov & Hinch [34] also presented generalized egpions for elasto-capillary
necking in a dilute solution of dumbbells with arbitrary spectrum of relaxation
times, /i{i =1,...3 and showed that after a short transitional peribe, column
selects a necking rate so that only the mode wighldngest time constant is in fact
being stretched. Anna & McKinley [87] considerece thpecific distribution of
relaxation times expected for the Rouse-Zimm mofet/ /i"‘, with m = 1.5 or
m = 2 corresponding to the Zimm model or Rouse moeigbectively. They note that
because the longest mode achieves an elasto-cgpiialance in which the
Weissenberg number g ;4 = 2/3, all other modes experience a weak stretching flow
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Figure 9: Elasto-capillary thinning for a series of sediliite
polyisobutylene solutions dissolved in decalin. verage molecul
weight of the PIB is 210° g/mol and the concentrations ai% {A20)
2% (A40), 3% (A60), 4% (A80), 5% (A100) respectiueReproduce
from Liang & Mackley,J. Non-Newt. Fluid MecH1994) [90].

with /ema =2/3™ which, fori 2, is less than the critical value of 0.5 requifeda
coil-stretch transition in a uniaxial extension&w. Because the stretching rate is
constant in the exponential necking phase, the traesient uniaxial extensional
viscosity is obtained; however, in contrast to lanfient stretching device, it is not
possible to vary the imposed deformation rate. Measents for a series of
polystyrene solutions with different high moleculaeight solutes have shown the
expected scaling in the longest relaxation time quahntitative agreement with linear
viscoelastic measurements in small amplitude agoity shear flow [87]. An
outstanding remaining challenge, however, is toewstdnd the strong dependence of
the experimentally-measured relaxation time on gbeymer concentration even at
concentrations well belowe* [38, 85].

5.3 Visco-Capillary Thinning of Newtonian Fluids

Dimensional analysis can be used to argue thatthe absence of inertia (i.e.
so thatOh >> 1) — a filament of Newtonian fluid (with visctgifs © m) should neck
down at a constant velocityep, ~5 //15. If the surface tension is known from static
tensiometry, then it should be possible to use oredsvariations inRy4 (1) to find the
viscosity of the fluid. Liang and Mackley [90] algmerformed experiments for a
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Newtonian fluid but were unable to obtain agreenvetit independent measurements
of the shear viscosity and surface tension. Singitablems were experienced in other
early experiments with Newtonian fluids [89], arftkde findings limited the spread
and utility of capillary thinning instruments . Aomparison of the full axial profiles
obtained from experimental capillary thinning expents with a viscous oil and a
dilute polymer solution is shown in figure 10.4dtdlear that for a Newtonian fluid, the
approximation of an axially-uniform cylindrical diment is less appropriate.

Direct integration of the zero-dimensional equation a Newtonian fluid
(equation (15)) gives a linear variation in the afilent profile with
Ruia () = (5/(6h5))(t- t) [34] and the numerical factor af/64sR, corresponds
exactly to the growth rate of the fastest growingdm (of infinite wavelength) in
Rayleigh breakup of a viscous fluid jet of radRs[28, 64]. However this analysis is
only applicable for infinitesimal perturbations aba cylindrical configuration and
neglects the axial variations in the slendernesheffluid thread and the long-range
nature of viscous stresses in low Reynolds numloersf McKinley & Tripathi [91]
used numerical calculations of the full one-dimenal governing equation (14) and

PS Oil:Oligomeric styrene Bo= rgl%/s »19 t = (/70%/5.): 8.54

| t=0s t=21s t=42s t=6.3s t=86s t=105s

[ |

SM-1 Fluidt 0.05 wt% PS (N} = 2 x 16 g/mol.) in oligomeric styrene =98¢
t=0s t=85s t=170s t=255s t=340s t=425s

Figure 10: Comparison of temporal evolution in filament preéilfor
viscous styrene oligomeric oihd the same oil containing 500ppm ¢
high molecular weight monodisperse polystyrene= 2 1¢° g/mol).
Adapted from S.L. Ann&2hD Thesi2000 [23].
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experiments with Newtonian calibration fluids taoshthat incorporating these axial
variations as well as gravitational effects leamsdditional contributions to the total
force on the thread. At short times, gravitatiosedging in the filament was found to
be important (as can clearly be seen from the dédep-bottom symmetry in figure
10) and leads to deviations from the similarityusioin [91]. However, for sufficiently
small radii so that gravitational effects are noger important, the midpoint radius of
a Newtonian fluid undergoing capillary thinning éxes according to the similarity
solution of Papageorgiou [27] for visco-capillaly@) necking indicated in figure 8
and table 2. In dimensional form this expressioy tawritten:

Rﬂid(t):0.0709;—(tc- ), for  RuaES/C Q. e (16)

The critical time to breakup may be obtained byimgtR,« (t=0)= R to be
t. =14.14sRy/s . The numerical front factor in this equation chesidpy a factor of
more than 100% from the value of ‘6’ obtained framsimple zero-dimensional
balance. Clearly, an accurate appreciation of tusrection factor is critical if
measurements ofRniq () are to be used to extract quantitative values lafi f
parameters that are consistent those measureéan 8bws.

5.4 Elasto-Capillary Thinning revisited; the approach to full extension

Although the deviation is less marked, recentysislhas shown that there are
also differences between the one-dimensional amd-dieensional analyses for a
viscoelastic fluid. The small, but non-zero axieddjents in the cylindrical thread lead
to a net tensile force in the thread that scalék thie thread radiu§ (t) ~ Rwa(?) as
expected but has a numerical coefficient thatighsly different from that assumed in
the zero-dimensional analysis [48]. The self-similature of the necking process in a
highly elastic fluid thread is shown in figure 11.

High resolution video-microscopy imaging and anesdgtection algorithm is
used to image the junction region matching thendylcal draining thread to the
hemispherical quasi-static end-drop [92] as shawfigure 11(a). As time progresses
this region becomes increasingly sharp. When plotte a dimensionless scale
normalized with the neck radiuByq(f) (here denotedh,(t)) it is clear that the
profiles progressively approach a single self-@miprofile (figure 11(b)). These
experimental observations are in good agreemetht thi¢ similarity solution to the
one-dimensional governing equation for the Oldr@ydaodel shown by the dashed
line in figure 11(b). This similarity solution priets the same necking rate as the zero-
dimensional elasto-capillary analysis (as giverequation (8)); however the front
factor is modified by a factor a2® as shown in table 2.

As we have noted in 84, when the molecules apprédthtretch the necking
dynamics cross-over from exponential to linear glegs given by equation (11) and
indicated schematically by the dashed line in tghtmost figure of table 2. Entov &
Hinch [34] use the FENE-P model to provide a veppraximate estimate of the
corresponding critical time to breakup.
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(@)

(b)

Figure 11: High resolution videomicroscopy showing the progiee
formation of the corner regioduring capillary thinning in a PS/I
Boger fluid; (a) digitized filament profiles; eaginofile is separated
time by at =2s» 0.4/;); (b) the profiles slowly approach a ssifnilai
shape when plotted in dimensionless form scaleth Wit ninimum
filament radius. Reproduced from Clasen etlaFluid Mech.In press
(2005) [92].
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Stelter et al. [93, 94] used careful measuremeftseothinning dynamics in a
wide range of different drag-reducing polymer solu$ to construct nomograms of
the measured relaxation time and the steady elmmgéhtviscosity; a representative
example is shown in figure 12. The measurements ghat the data lie along two
distinct limiting curves; one for flexible non-ianpolymers (upper curve labeled ‘1’)
and one for ionic polymers (labeled ‘2’) which ebihiaspects of rigid-rod like
behavior as a result of charge repulsion alongliaén.

This nomogram shows that as the relaxation timeaeames (either via
increasing the molecular weight of the chain or tomcentration in solution) the
steady extensional viscosity also increases. Thstesce of two bounding curves
provides a convenient method of rapidly assesdiegnbolecular extensibility of a
particular polymer chain. However the theoreticablerpinnings of this empirical
correlation have not been firmly established yetubsSitution of the analytic
expression for the axial stress in a finitely-esible dumbbell model given by
equation (7) into the zero-dimensional force batafequation (15)) confirms that
observation of a linear radial decay in a capilltiypnning experiment at long times
indeed corresponds to measurement of the true ralneéxtensional viscosity:
Peap® he= 3h & 27 )2, If the solvent contribution given by the firstrrein this
expression is negligible then noting that the payimcontribution to the viscosity is

Figure 12: Variation of the steadgtate apparent extensional viscc
(here denotedfe () with the characteristic relaxation timé)(for a
number of aqueous solutions including polyacrylami@Praestol’)
polyethylene oxide (‘PEO’); carboxymethycelluloséCNIC’) and
Xanthan gum. Curve ‘1’ denotes flexible coil belwayicurve ‘2
denotes rigid rod behavior. Reproduced from Stedteal. J. Rheolog
(2002) [93].
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hy° G/ = nksT , we find that the steady elongational viscositiinearly dependent
on the relaxation time as shown in figure 12. Hosvethe molecular extensibility
parameter is an independent parameter and so & fafcurves is perhaps to be
expected. The curves in figure 12 confirm the etqtemn that the molecular
extensibility of an expanded ionic polymer is smialthan for a non-ionic flexible
Gaussian chain. Stelter et al. [93] also show #wmsalt is progressively added to
polyacrylamide solutions and the intramolecularrgkarepulsions are screened out,
measurements of thée: // relationship move laterally from curve 2’ to cernil’;
consistent with a decrease in relaxation time antherease in molecular extensibility.
Recent drop pinch-off experiments with polyelegttelsolutions including partially-
hydrolyzed polyacrylamide and DNA show that thisrease in flexibility and the
concomitant increase in the elongational viscosdyrelate with enhanced turbulent
drag reduction [95].

In general, molecular models such as the Rouse-Zinwoahel predict different
scalings with molecular weight for the polymer xetion time and for the steady-state
extensional viscosity. The scaling of the formeamfity with molecular weight is well
known, / ~ M3, wherenis the solvent quality exponent [96], and the iscglor the
steady elongational viscosity can be found to be:

CNaks T
M

w

he »Gl 12 ~ (MIYMEEDy~Ma . 17

In the limit of a theta solvent(=1/2) the scaling of relaxation time and elongational
viscosity with M, is identical, in agreement with the linear vaoatin the A / /
relationship observed in figure 12. For hydrodyreatty-interacting chains in good
solvents ® 3/5) there is a small difference in the scaling of sheady elongational
viscosity (M&f) and the characteristic relaxation timévi%®). However large
variations in the molecular weight would probab#/ teeded to observe these effects
in capillary thinning experiments and this may eiplwhy no discernable spread in
the data beyond a single line is seen in the exygaris in [93]. Further considerations
regarding the steady elongational viscosity ofifixand rigid polymers in solution
are reviewed by James & Sridhar [97]. Repeatedlaapbreakup experiments on the
same sample have also been used as a means tomtbaieffects of extensional flow
on the degradation of macromolecules commonly usattag reduction studies [84,
89].

In most of the careful studies of capillary thimgpiin polymer solutions the
fluids have been sufficiently viscous and elastiowgh that gravitational drainage is
relatively unimportant; however if the aspect ratid the imposed stretching
deformation is increased substantially then thislead to pronounced asymmetries in
the filament [98]. As the Ohnesorge number is desed, inertial effects can also
become important and careful control of the aspati® employed in experiments is
critical. Rodd et al. [99] have recently presengederies of experiments with low
viscosity aqueous solutions of polyethylene oxidevater and show that, in general,
successful measurements of capillary thinning regeither De, 2 1 (for polymer
solutions) orOh 3 1 (for Newtonian fluids).

© The British Society of Rheology, 2005  (httwwWw.bsr.org.uk) 33



G. H. McKinley, Rheology Reviews 2005, pp 1 - 48.

5.5 Concentrated Polymer Solutions

As the concentration of polymer is increased, coiérlap and entanglement
effects become increasingly important. Experimemabsurements and constitutive
models for such systems show that the steady eatelsviscosity may show both
extension-rate thickening and extensional-thinnidgpending on the imposed
extension rate [100]. Consequently, capillary tiignand breakup measurements may
show pronounced deviations from the simple elaafubary balance appropriate for
dilute solutions. This can be seen in the expertalemeasurements at the highest
concentrations (A80, Al100) in figure 9; the filarhenecking rate becomes
increasingly rapid as the chains become increasidgiformed and disentangled.
Capillary-thinning measurements on entangled pwlgse solutions show that the
filament evolves on time-scales corresponding te Rouse time for molecular
stretching rather than on the longest (reptatiamet scale [101]; however a
quantitative theory for this evolution is presenthcking. Numerical calculations
suggest that the Giesekus model provides a goolitajive description of entangled
solution response in transient extensional flovgs 82]; however, no simple analytic
solution for the evolution in the midpoint radius available for this, or any other
nonlinear differential constitutive model.

Renardy uses asymptotic analysis [40] to showftiratnany nonlinear models
the filament dynamics close to breakup change anbatly and the radius can go to
zero uniformly over a finite region of space ratlthan at a single point. This
phenomenon has not been observed definitively yeat the consequences of
entanglement effects in capillary thinning can Hasirated by the experimental
images shown in figure 13. The fluid is a semi-dilantangled solution of polystyrene
in tri-cresyl phosphate (TCP) which has been wi#racterized in both steady and
oscillatory shear flows and is weakly strain-haidgnin transient extensional flow
[103]. As the filament necks, the formation of athlastic filament can be observed.
However, before the elasto-capillary similarity wg@n shown in figure 11 is fully
established, the maximum elongational viscosityeisched, the necking rate in the
central section increases and filament failure oecilihe enlargement of the final
frame suggests that the ultimate breakup eventrssimultaneously at several spatial
locations; however high speed and high resolutiodiss of breakup in entangled
solutions are needed for definitive assessment.

5.6 Weakly Viscoelastic Fluids

In the limit of very weakly elastic liquids, elortgd filaments and strands are
not observed; however it can be seen from the fofraquation (15) thaany non-
Newtonian contribution to the total stress may bpeeted toretard the rate of
necking (as given bylR.q/ dt). Since the flow is elongational in character, tise of
the Reiner-Rivlin class of models is appropriateatmlyze the first effects of non-
Newtonian stresses [19]. Following specificationtloé form of the two functions of
the flow invariants in this model, the resultinguation set can then be integrated
forward in time. For the simplest case of a seama@r fluid, the extensional viscosity
can be expressed in the fortm =3/, +3bege . This expression can be combined with
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equations (1) & (15) and solved analytically. Tleuiting solution is implicit in time
however, and is not given here. Instead we consweiappropriate asymptotic limits:
for low deformation rates and short times, the mateesponse is Newtonian and the
necking rate is linear in time; however, close tedakup the quadratic term in the
extensional viscosity expression dominates. In tlégime, the filament radius
decreases quadratically in time as indicated in ftheth column of table 2. The
filament still breaks in finite time and both th&asn and the strain-rate diverge,
despite the extensional-thickening in the viscodfseliminary experiments in our lab
using STP oil (a prototypical weakly elastic flledhployed by Joseph and coworkers
in rod-climbing studies [104]) suggest that thisaisimple but effective model for
interpreting the first non-Newtonian effects in iflapy thinning [105].

5.7 Generalized Newtonian Fluids

Renardy [36] has considered the case of Generahsgtonian Fluids and
shown that similarity solutions exist with an expahthat depends on the functional
form of the viscosity and how it varies with defation rate in the necking fluid
thread. Recently Doshi et al. [106, 107] have atersd the case of power-law fluids

t,=2.23s tt,=0.57 s
t-tc =1.23s t-tc =0.23s
» 4

Bo=rgR?/s » 3.1

Figure 13: Images of the elastocapillary necking of a coneeet
polystyrene solution (5wt% PS in tricresyl phosgh@CP)). The she
rheology of the fluid is well described by a sin@&sekus modekith
hy =59 Pa.sh,=2 Pa.s/ =0.6 sanda=0.2 Unpublishe:
results; courtesy of O. Brauner and A. Tripathi.
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and Carreau fluids in detail. In the region of trexk, the capillary pressure is high
and consequently so is the necking rate. The ealease in the effective viscosity in
this region leads to a positive feedback effect &@mel necking rate accelerates
continuously. The fluid column thus shows enharmedl gradients and a ‘cusp-like’
profile close to the pinch region as indicated schiically in table 2. In fact a detailed
analysis for the power-law fluid (both with and Reéut inertia) shows that the
slenderness assumption (i.e. thd®/ dz<1) is violated for a power law fluid with

exponenn 2/3 [107].

For a power-law fluid with constitutive equatidn=(Kg”'1)g, the midpoint
radius varies as:

%:F
Ro

where n is the power-law exponenK is the consistency index an&(n) is a
numerical constant. A series of numerically-comgupgofiles are shown in figure
14(a). As the filament necks down and approachessifgular point of breakup (at
t =(tc - t)/tr = 0) the midpoint radius is well-described by avpolaw of slopen.
Measurements with foods and consumer products winézfuently exhibit inelastic
shear-thinning behavior show that the rate of féamnecking is well-approximated
by this expression [108]. In figure 14(b) we shoapitlary thinning measurements in
two yoghurt samples; one a whole-fat sample anather a low-fat formulation. The
image profiles (inset) from a high-speed video aanshow the absence of a stringy
appearance and instead reveal the developmentaofsp-like region in the neck.
Nonlinear regression of equation (18) to the déitava determination of the power-
law exponent characterizing the fluid rheology and also the time to failureX
which is important in package-filling operations.

(n)iK(tc ), (18)

In general the front factoF (n) in equation (18) is a function afand must be
found numerically. The zero-dimensional model ofi&gn (15) givesFip =2 ”/3
and a polynomial regression to the numerical sohutf the full similarity equations
[107] gives:

Frum=0.0709+ 0.2388(1n)+ 0.547HIn%) 0.2848(0° ... (19)
forn3 0.6.

In each of the above expressions, the correct Nearoresult is obtained for
n = 1. In the case of a Carreau fluid, this power-lixe necking is ultimately cut-off
by the background Newtonian viscositg,() at very high deformation rates, and in
this case the midpoint radius ultimately goes t Zi@early in time.
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Figure 14: Two different representations of capillary thinning ¢

generalized Newtonian fluid: (a) evolution in thendnsionless radil

hmn = Rua(9/ R as a funton of dimensionless time from 1

singularity ¢ =s (t, - t)/ ,R, . Reproduced from Doskit al., J. Non
Newt. Fluid Mect (2003) [107] (b) evolution in the (dimension

radius as a function of time for two different yoghsamples (a ‘non
fat’ and a ‘regular’ commercial yoghurt) togetheithna fit to equatio

(X); the images are obtained using a higieed video came

Reproduced from A.E.Park].Sc. Thesi2003 [108];
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The case of a generalized Newtonian fluid with eldystress is interesting but
has not been studied in great detail to date. Tingles most important difference
between a fluid exhibiting a yield stress and otiigids tested in capillary thinning
and break-up devices is the existence of a crieahple radius (at the ‘neck’ or
midpoint). The maximum capillary pressure in a #aref fluid iss/R_,, and itis this
that drives the fluid flow in the thread. If theeld stress exceeds this value, then
capillary pressure is insufficient to generate @avfl The exact value for this critical
radius has to be determined from the full solutimthe problem; however, anpriori
scaling estimate for the critical radius can beuged on dimensional grounds to be
given by R, ~s/t ,. For sample radiiR> R, then the thread or ‘liquid bridge’ will
simply sit in static equilibrium and not evolve time. This has been observed in
careful experiments with liquid bridges of liquidystalline materials which exhibit a
yield stress [63]. Breakup of fluid jets with a ldestress have also been studied by
Goldin et al. [109].

As the radius of a fluid thread decreases, thellaapipressure inside the fluid
increases and will eventually exceed the valuehefytield stress. This is why it is
possible to observe stable liquid bridges of fosdsh as mayonnaise or ketchup
connecting two solid surfaces (e.g. between ortasnb and forefinger) when the
thread radius is large, however these threads lwbak you pull your fingers apart —
it is rare to see thin “stringy” threads of yieldess materials (unless high mol. weight
additives are added). Solving the axially-uniforenedimensional equations gives the
following expression for the midpoint radius

s
G =—— l-exp L—2
R’nd( ) \/:—yy p 2\/5/77
with a critical radiusR, :s/\/:—%t y - Validation of the accuracy of this equation has y
to be performed.

6. CONCLUSIONS AND FUTURE WORK

In this review we have surveyed recent experimientanerical and theoretical
advances in our understanding of the capillaryrting and breakup of complex
fluids. In addition we have attempted to note irchealiscussion some specific
technical questions that remain outstanding. Is seiction we highlight more broadly
some important areas for future research.

The liquid bridge geometry shown in figure 3(c)shbecome a standard
laboratory configuration for studying visco-elas@pillary thinning for the reasons
highlighted above. However the other geometriesraoee relevant to commercial
processing operations and additional computatianadl theoretical analysis of these
configurations is needed. The addition of polymerdripping jets and drop-on-
demand inkjet printing configurations can inhibieékup and completely eliminate
satellite droplets [46, 47, 110].
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Figure 15: The effect of polymeric additive on drop pinchgf) The
image on left shows the pindif of a water droplet; (b) the inhibiti
of pinchoff through addition of 100ppm of PEM ( 4° 1¢F g/mol). (c
The measured evolution in the neck radius initiallpws rapid neckir
with h,,, ~1?® before crossing over to a slower exponential dex
t 0.07s. Reproduced from Amarouchene etRilys Rev. Let{2001
[46].

An illustration of the dramatic effect of elasticits shown in figure 15. The
left-hand image shows the pinch-off of a dropletitow viscosity Newtonian fluid
(Oh<< 1) and is now well-understood, both theorelycahd numerically [43, 51, 64].
However the addition of high molecular weight pogminhibits the singularity.
Measurements of the neck radius shown in figure)18iiow that at short times the
polymer does not modify the initial necking; howevthere is an abrupt crossover
from inviscid-like dynamics k~¢*®) to exponential elasto-capillary decay
(h~exp(- ¥/ 3 )) as expected from figure 8. A simple zero-dimenaianodel of the
neck evolution has recently been presented [38]nouhumerical simulation of the
complete one- or two-dimensional equations hasbgen possible. Interestingly the
system passes from an inertio-capillary to an elaapillary balance and viscous
effects are thus irrelevant throughout. This sugggdsat studies of the dynamics of
‘inviscid elastic fluids’ (or more accurately ‘potial flows of viscoelastic fluids’)
may be a viable avenue for future research. Joaegdlcoworkers have recently used
such an approach to consider the linear stabifityistoelastic jets and find excellent
agreement with the full linear theory [111, 112hwever, the extension to large
amplitude deformations and nonlinear viscoeladfrces remains to be considered.

Other liquid bridge configurations have also beewppsed as potential
elongational rheometers for probing the responseoofplex fluids. In particular, the
filancemeter has been developed as a method of probing thenalglity of
viscoelastic biological fluids such as respiratang cervical mucus [113, 114]. It has
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been known since the early work of Scott-Blair witbvine mucus that the apparent
extensional rheology of these fluids varies sigaifitly with hormonal cycles [115].
This has lead to patented devices that use exsvigasurements of the extensional
viscoelasticity for probing fertility in both cowand humans [116]. The filancemeter
uses an axial drive system to elongate a cylindtigaid bridge linearly in time
beyond its Plateau stability limit. The force inetlstretched fluid column is not
measured; however the variation in the total lifetias the pulling velocity is varied
can be determined with high accuracy by measurhmy electrical conductivity
between the upper and lower plates. Numerical ttions with Newtonian [68] and
Generalized Newtonian Fluids [67] show that thegtento breakup increases
monotonically with the capillary number and alspeleds on the extensional rheology
of the fluid. James has recently shown that measemés of the increased length to
breakup resulting from non-Newtonian stresses ciao &e used to probe the
extensional rheology of weakly elastic fluids sashprinting inks and coating colors
[117]. Careful experiments with Newtonian fluidsggest that the length to break
increases beyond the Plateau stability limit witle square root of the separation
velocity [118]; however, there is presently no gtialtheory for Newtonian or non-
Newtonian fluids.

Although we have reviewed experimental measurenfenta large number of
different materials in this article, the extensiombeology of several classes of
complex fluids that have not been studied extehsiie date; especially surfactant-
based systems. Theoretical analysis of the nealdiray viscous Newtonian thread in
the presence of an insoluble surfactant shows KMatingoni stresses dramatically
affect the necking dynamics and satellite formattmowever ultimately the surfactant
is convected out of the neck sufficiently fast thlae visco-capillary solution of
Papageorgiou is regained [119]. Linear stretchingpeements with a soluble
surfactant [120] show that, depending on the visgasf the bridge, the presence of
surfactant can either increase the length to bmedkuOh>> 1) or decrease it (if
Oh <<1). It will be interesting in the future to studther surfactant systems such as
worm-like micellar solutions which exhibit strongran-hardening in filament
stretching experiments followed by sudden ruptwenés at high stresses [121].
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