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ABSTRACT 

We review similarity solutions to describe the asymptotics of the approach to 
breakup in non-Newtonian liquid jets. Both creeping flow and flow with inertia are 
considered for a variety of constitutive models. New phenomena in some models of 
non-Newtonian flows include the possibility of a jet breaking up simultaneously over a 
finite length, as well as a purely elastic breakup mechanism in which surface tension 
plays no role. 
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1.  INTRODUCTION 

Observations of the breakup of liquid jets into droplets go back at least to the 
ancient Egyptians, who used water dripping from an orifice as a basis for timekeeping 
devices (as did other cultures independently). The first mention of the effect in the 
scientific literature is in a book by Mariotte [1]. He assumes, incorrectly, that gravity is 
the force driving the breakup. In the nineteenth century, systematic experiments to 
investigate the phenomenon were conducted, most notably by Bidone [2], Savart [3], 
Hagen [4] and Magnus [5]; these experiments clearly showed that jet breakup resulted 
from an instability. On the theoretical side, Laplace [6] and Young [7] developed the 
theory of surface tension, and Plateau [8] noted that a cylinder is not a minimal 
surface, thereby identifying the mechanism of instability. 

The first linear stability analysis, for the surface tension driven instability of an 
inviscid cylindrical jet, is due to Rayleigh [9, 10]. The extension of the results to the 
viscous case was finally completed by Chandrasekhar [11], following partial results by 
Rayleigh [12] and Weber [13]. Tomotika [14] first considered the effect of another 
liquid outside the jet. 

Experiments on jets of viscoelastic fluids (Goldin et al [15], Gordon et al [16]) 
showed that breakup is significantly delayed compared to the Newtonian case or even 
suppressed altogether. Linear stability has nothing to do with this; actually viscoelastic 
jets are more unstable than Newtonian jets with the same viscosity (Goldin et al [15], 
Kroesser and Middleman [17], Middleman [18]). These results led to the conclusion 
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that the stabilizing effect of viscoelasticity arises not in the initial growth of 
disturbances but in the later stages of jet deformation when the high elongational 
resistance of the polymer becomes important (Goldin [15], Entov [19]). Numerical 
simulations (Entov and Yarin [20], Bousfield et al [21]) confirm this. The stabilization 
of liquid jets by polymeric additives was exploited by spiders long before anybody 
heard of the Egyptians and their water clocks. 

In this article, we shall be concerned with the asymptotic evolution of liquid 
jets as breakup is approached. In this limit, the evolution of the jet can be described by 
a similarity solution of a one-dimensional equation that is based on a slender body 
approximation. Even in the Newtonian case, these similarity solutions were found 
quite recently. Eggers [22] (see also Eggers [23], Brenner et al [24]) found a similarity 
solution, which balances viscous, inertial and surface tension forces against each other 
and leads to breakup of the jet in finite time. This solution was compared with 
numerical simulations (Eggers and Dupont [25]). Papageorgiou [26] found a different 
similarity solution for the case in which inertia is neglected. An a posteriori analysis 
shows, however, that in the limit of breakup the assumption of neglecting inertia 
becomes inconsistent. For highly viscous fluid jets, one would therefore expect a 
breakup behavior which first follows the Papageorgiou solution, but then changes to 
that of Eggers as one gets very close to breakup. This expectation has indeed been 
verified in experiments (Rothert et al [27]). 

I shall not attempt to review the extensive literature on viscoelastic jets and 
filaments, see for instance the books of Petrie [28] and Yarin [29]. Rather, this article 
will focus on the narrower issue of similarity solutions for breakup. For the Oldroyd B 
and Maxwell models, it has been shown that no finite time breakup occurs, at least in a 
one-dimensional model, which neglects axial curvature and inertia (Renardy [30, 31]). 
The elastic resistance to stretching in these model fluids is strong enough to suppress 
breakup entirely. On the other hand, Chang et al. [32] have presented numerical results 
that show a breakup by iterated stretching; axial curvature and inertia were included in 
their model. A full mathematical analysis of this breakup remains an open problem. 
Other models for viscoelastic fluids, and most real fluids, are less elongation 
thickening than the Oldroyd B fluid; for such fluids similarity solutions analogous to 
those of Eggers and Papageorgiou are possible. Some fluids even decrease their 
elongational resistance to such an extent that a purely elastic mechanism for breakup is 
possible in which surface tension plays no role. Such an elastic breakup was observed 
in the numerical simulations of Hassager et al [33]. 

Similarity solutions for breakup without inertia were first found for the 
Giesekus model (Renardy [34]) and subsequently for a number of other models of 
elastic fluids (Renardy [35, 36], Fontelos [37], Doshi and Basaran [38]). As in the 
Newtonian case, inertia will change the breakup asymptotics; since many elastic 
liquids are highly viscous, however, this will often not happen until very close to 
breakup. Similarity solutions for breakup with inertia were analyzed in Renardy and 
Losh [39] for the Giesekus model and in Renardy and Renardy [40] for the generalized 
Newtonian fluid; the numerical results of Doshi [41] show the evolution towards self-
similar behavior from generic initial data. An interesting aspect of the analysis for the 
generalized Newtonian fluid is the existence of branches of solutions, which connect 
the inertial Eggers solution for the Newtonian case to the inertialess Papageorgiou 
solution. 
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2.  SLENDER BODY APPROXIMATION 

One-dimensional models for liquids jets are based on the assumption of a 
slender jet where the scale on which the jet radius varies is sufficiently longer than the 
jet radius and the variation of axial velocity across the jet is negligible. When a jet 
breaks up into spherical droplets, these assumptions are valid in the necks between the 
drops where breakup takes place. For the derivation of one-dimensional models for 
viscoelastic jets, see e.g. Petrie [28], Renardy [42], Bechtel et al [43]; the derivation 
given below is basically that presented in [28]. 

We find it convenient to formulate the one-dimensional equations in a 
Lagrangian formulation. We consider a reference configuration in which the jet has 
uniform thickness δ. Let X denote the position of a fluid particle in this reference 
configuration, and let x(X,t) be the actual position. The stretch is defined by: 

X

)t,X(x
)t,X(s

∂

∂
= .                 ..........(1) 

Let u(X,t) denote the axial velocity. The equality of mixed partial derivatives leads to: 

Xt us = .         ..........(2) 

The cross section of the jet is A=πδ 2/s. The balance of axial momentum yields: 
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Here Txx denotes the axial stress component, p is the pressure, and s/T2 δπ   is the 
product of the surface tension coefficient T with the circumference, i.e. the axial force 
of surface tension.  The free surface condition on the lateral free surface of the jet 
implies that: 
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By inserting the resulting expression for p in equation (3), we obtain: 
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To supplement the equations (5) and (2), we need to relate the stresses to the motion. 
For the slender body approximation, it is assumed that the axial velocity u is uniform 
across the cross section of the jet and that the radial velocity is proportional to the 
radius to satisfy the incompressibility condition. Moreover, we note that: 
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according to equation (2). This leads to the velocity gradient: 
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For the Newtonian fluid, we therefore obtain: 
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In the following, we shall be interested in similarity solutions for breakup. With the 
breakup time set at t = 0, such solutions have the form: 
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Before we examine such solutions in detail, we make some general remarks. First, in 
the derivation of the model equation, it was assumed that azimuthal curvature is large 
relative to axial curvature. We can assess the consistency of this approximation as 

breakup is approached. The azimuthal curvature is proportional to 2/1
s , i.e. 

( ) 2/
t

α−− . On the other hand, axial curvature is proportional to: 

( ) ( ) βα 22/5
XX

2/12
t~ss

−−− −   .                ..........(10) 

The assumption of neglecting axial curvature is therefore consistent if  β < 3α/2. In 
much of the analysis below, inertia will be neglected. For this to be consistent, the 
Reynolds stresses must remain small compared to the elastic or viscous stresses. The 

Reynolds stress is proportional to u2, i.e. to ( ) 222
t

−−− αβ . If surface tension is driving 

the breakup, then the stresses are of the same order as the curvature, i.e. proportional 

to ( ) 2/2/1
t~s

α−− . It follows that the assumption of neglecting inertia is consistent 

if β > 3α/4+1. This is violated in most cases, including the Newtonian fluid. For 
sufficiently viscous fluids, inertialess solutions can describe the evolution up to a point 
very close to breakup, but ultimately inertia must enter the balance. 

The position of a fluid particle in physical space is: 

( ) ( ) αβ −−= ∫
  

 
   t~dYt,Ysx

X

0
.                         ..........(11) 

Solutions discussed below have either β > α or β = α . In the former case, the self-
similar region shrinks to a point as breakup is approached. If β = α , on the other hand, 
the self-similar region occupies a fixed length in space and, at breakup, the jet breaks 
over a finite length at once rather than just at one point. This behavior has been 
observed in experiments (G. McKinley, private communication). 
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3.  SIMILARITY SOLUTIONS WITHOUT INERTIA: THE NEWTONIAN 

CASE 

For a Newtonian fluid with no inertia, equation (5) reduces to: 

0
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The only physical constants involved are the viscosity η and the surface tension 
coefficient σ. These constants can be used to form a velocity, but not a length or time 
scale. A result of this is that the equations have a scaling invariance, and similarity 
solutions always exist in one-parameter families. We can rescale t with the factor 
3ηδ /σ , X with δ and u with σ /(3η). This leads to the dimensionless system: 
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resulting from equations (12) and (2). We note that if s(X,t), u(X,t) is a solution, then 
so is s(µX,t), µ−1

u(µX,t) for any µ > 0. This invariance under stretching of the spatial 
variable also applies to non-Newtonian fluids as long as inertia is neglected. 

An integration of equation (13) leads to: 
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We shall look for solutions of the form: 
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Here, t = 0 is the breakup time. The second equation of (14) then becomes: 

( ) ( ) ( )ξψξφβξξφ ′=′+2 .                                   ..........(16) 

where ( )βξ t/X −= . We assume that the region where the velocity tends to infinity as 

t → 0 is localized; for this we need to require ψ(−∞) = ψ(∞) = 0. Consequently it 
follows that: 
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Inserting equation (15) into the first equation of (14), we find: 
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k2
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We shall assume regular behavior of the solution at ξ = 0: 

( ) ( )42
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This imposes the conditions: 
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This leads to: 
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We next make the substitution: 
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We can then find the solution of the differential equation (18) in the implicit form: 

( ) ( ) ξβχ
β

Cuuu
2/12 =+=

− 
: ,                                                    ..........(24) 

Since changing the constant only amounts to a rescaling of ξ (see the remarks on 
scaling above), we can assume C = 1 without loss of generality. 

The constraint (17) is, by equation (18), equivalent to:  
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which takes the form: 
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The integrals can be evaluated (see Gradshteyn and Ryzhik [44], p.299, # 3.259,3), 
resulting in the equation: 
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The smallest positive root of this equation is at β =2.17487. 
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This solution was first found by Papageorgiou [26] and simplified by Eggers 
[23]. It has been compared to simulations and experiments and found to describe the 
breakup from generic initial data.  Figure 1 shows the jet profile obtained from the 
similarity solution. To plot this profile, we have reverted to Eulerian coordinates to 

show the actual shape in physical space; the plot is of the radius φ/1r =  against the 

position in space: 

( )∫=
ξ

ζζφ
 

 
   

0
dx .                                    ..........(28) 

Papageorgiou's solution is actually the first in a one-parameter family of solutions. 
Instead of assuming quadratic behavior at the origin as in equation (19), we can 

assume ( ) n2
n20 yy~ ξξφ − , where n is any positive integer, and for each n there is a 

similarity solution [24]. Which similarity solution describes the breakup asymptotics 
depends on the behavior of the initial data near the point where s has its maximum. 

Since β < 5/2 = 1+3α /4, the assumption of neglecting inertia becomes 
inconsistent as t → 0. The balance of inertia, viscosity and surface tension leads to 
another similarity solution for which β = 5/2. This case will be discussed later. 

Lister and Stone [45] show that when the viscosity of an outer liquid is taken 
into account, then a similarity solution for breakup exists for which the assumption of 
neglecting inertia is consistent. In this case, the breakup can no longer be modeled by a 
one-dimensional system and a two-dimensional problem needs to be solved. To my 
knowledge, no attempts exist at this point to extend such an analysis to non-Newtonian 
fluids. 
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 Figure 1: Profile of Papageorgiou’s solution.  
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4.  BREAKUP WITHOUT INERTIA FOR NON-NEWTONIAN FLUIDS 

4.1  Generalized Newtonian fluid 

For a power law fluid, we have: 
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with some exponent a > 0. The analogue of equation (12) is, after integration:  
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and, as before, we can non-dimensionalize and set 3η =1, σ /δ = 1 without loss of 
generality. 

We seek self-similar solutions of the form: 
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This, together with: 
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transforms equation (30) to: 
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By matching terms in this equation, we find α = 2a , γ = a , and: 
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takes the form: 

( ) ( )[ ] 0da2 =′+∫
∞

∞−
ξξφβξξφ   

 
.                          ..........(36) 

We assume that near ξ = 0: 
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which determines  β and k in terms of  y0: 
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Bounds on β are obtained as follows. The first term in equation (36) is 
integrated by parts, noting that φ is a symmetric function of ξ and φ → 0 as ξ → ±∞: 
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Equation (36) becomes: 
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Both terms on the right hand side are positive unless β > 2a. Moreover, using the 
asymptotics of the solution at infinity, it is shown in Renardy [35] that the integral in 
equation (36) diverges to −∞ as β → 2a+1. We conclude that 2a < β < 2a+1. 

Unlike the Newtonian case, there is no closed form solution available. 
Numerical solutions were found in Doshi and Basaran [38] and in Renardy and 
Renardy [40]. For a fixed a, the numerical solution of equations (34) and (36) 
proceeds as follows: For any positive y0, we can numerically solve (34), and the 
integral term in (36) is finite as long as β < 2a+1. If y0 is sufficiently small, the integral 
term is positive, while it becomes negative when β  is close to 2a+1 (Renardy [35]). 
We can thus find two values of y0 , one that makes the integral in (36) positive and one 
that makes it negative. To the pair of y0 values, a bisection method is applied, to find 
the value of y0 , for which the integral is equal to zero. Finally, equation (38) gives β as 
a function of y0  and a. 

Figure 2 shows that β is close to 2a+1 for small a, and close to 2a for large a. 
We note that for β < 3a/2+1, inertia ultimately becomes important as breakup is 
approached. Moreover, if β > 3a, then axial curvature is not negligible close to 
breakup (Renardy [36]). These lines are drawn dashed in figure 2; the bold dots denote 
intersections and  show that inertia can be neglected only if a is either less than about 
0.26  or larger than approximately 1.95; i.e., for fluids that are either strongly shear 
thinning or strongly shear thickening.  Axial curvature is important if a is less than 
approximately 0.54. 
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For large ξ , φ is proportional to ξ −2a/β .  This implies that the asymptotic 
behavior of the jet profile in physical space is: 

r ~ x a/(β − 2a) .                           ..........(41) 

This leads to a cusped shape when a is small, and to a very flat U shape when a is 
large and β is close to 2a. Figures 3 and 4 illustrate this change. 

 

4.2  Giesekus/PTT model 

For these models, we have: 
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for the Giesekus fluid, and: 
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 Figure 2: Power law fluid. β − 2a as a function of a.  
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Figure 3: Jet profile for power law liquid, a = 0.3 
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 Figure 4: Jet profile for power law liquid, a = 1.98 
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for the PTT fluid. Unlike the Newtonian and power law liquids discussed above, 
similarity solutions for these models are not exact solutions, but asymptotic solutions 
in the limit of high stretching, which applies as jet breakup is approached. In this limit, 
trr can be neglected and the equation for t11 reduces to: 
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for both models. We can simplify this equation by setting t11 = ps
2, leading to the new 

equation: 
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for p. 

Non-dimensionalization of the equations leads to the single dimensionless 
parameter [34] νηη  =~ , which is a kind of retardation parameter, since 1/ν has the 

dimension of viscosity. It is, however, not the zero shear rate viscosity, but an 
elongational viscosity in the limit of infinite elongation rate. In dimensionless form, 
the equations are: 
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For a similarity solution, we set: 
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t

X
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3
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                    ..........(48) 

and the force λ(t) is of the form λ = −kt. We insert this ansatz into the equations above,  

and obtain: 

( )[ ]

( )

( ) ( ) .     2                                  

,                 

,       2  

ξξβξ

νξβξ

δ

σ
ξβξη

u~s~s~

0s~p~p~p~3-  

s~ks~s~s~~3s~p~

22

22/33

′=′+

=+′+

=+′++

            ..........(49) 
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We need to satisfy the integral constraint: 

[ ] 0ds~s~2 =′+∫
∞

∞−

 
    ξβξ .                                   ..........(50) 

Because of the first equation in (49), we can put this in the alternative form: 

0dξs~ks~s~p~
22/33 =







−+∫

∞

∞−

       
δ

σ
             ..........(51) 

We shall use this constraint to find k. 

We shall now focus on the case of no retardation, i.e. 0~ =η . In this case, the 

first equation of (49) reduces to: 

    -1
ks~s~p~

2/ =+ .                ..........(52) 

For a given value of p~  and k > 3(2 p~ )1/3/2, there are two values of s~  satisfying 

equation (52). If we include the η~ -term with a small η~  back in the equation, we find 

that the larger solution of (52) is stable, while the smaller solution is unstable. 
Moreover, when p~ > 4k

3/27, then s~  will rapidly approach zero. Hence the 

appropriate solution to consider for 0~ =η  is one where s takes the larger value 

consistent with (52) and then jumps to zero when p~  reaches the value 4k
3/27. Let us 

say this happens at ξ = ξ0 . The constraint (50) then reads: 

[ ] [ ]

[ ] ( ) .             

        

0 

 

0 

 

 

 

 

∫∫

∫∫
−=′+=

′+=′+=

+

∞∞

∞−

ξξ
ξβξβξ

ξβξξβξ

00

0

ds~22ds~s~22

ds~s~22ds~s~20

                    ..........(53) 

Consequently, β = 2. 

To solve the differential equation, we solve equation (52) for p~ and insert the 

result in the second equation of (49). We then set s~  = φ 
2. This leads to the differential 

equation: 

( ) 0k4kk316k23
4223 =′−+−+′+− φξφφφφξφφ .           ..........(54) 

Near ξ = 0, we expect the behavior ( )42
20 O ξξφφφ +−=  . This leads to the values φ0 

= 6/7 , k = 21/4. We next substitute: 

( )2
u217

6

+
=φ ,                                          ..........(55) 

which allows us to obtain the solution of the differential equation in the implicit form: 
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( )
( )

ξC

u78

u47u
6/52

3/22

=

+

−
,                                         ..........(56) 

By a rescaling of ξ , we can choose C = 1. The point where p~ = 4k
3/27 and s~  jumps 

to zero corresponds to u = 1. 

Figure 5 shows the corresponding jet profile. We note that β = 2 implies that 

the spatial coordinate ∫= dXsx   does not depend on time. Consequently, the self-

similar part of the jet occupies a fixed length in space rather than shrinking to a point 
as breakup is approached. 

Numerical solutions for nonzero η~  were found in Renardy [34]. The value of β 

varies continuously from β = 2 for η~  = 0 to the Newtonian value of 2.17487 at large 

η~ , see figure 6. The solution s~  now approaches zero asymptotically as in the 

Newtonian case rather than jumping to zero at a finite ξ . For small η~ , there is an 

inner region where the solution looks like that for η~  = 0 and an outer region where the 

solution is qualitatively similar to the Newtonian case. 
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 Figure 5: Giesekus jet, profile without retardation.  
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4.3  Generalized PTT model 

We shall now consider a generalized PTT model, for which the quadratic term 
in the constitutive law in the previous section is replaced by a more general power. 
That is, we assume the constitutive relation: 

( ) ( ) ( ) ( ){ }    T1aT
tr

dt

d
vv  TTTvTTv

T
∇∇∇∇∇∇∇∇∇∇∇∇∇∇∇∇ +=++−− − µνκ  .          ..........(57) 

Here a > 1. We shall not consider a retardation time, because if it is included, then 
Newtonian terms would either be negligible or dominate in the limit of jet breakup 
unless a = 2 as in the preceding section. 

In the limit of a rapidly stretching jet, we can neglect Trr , and the leading terms 
in the equation for T11 lead to: 

( ) 0TT
s

s
2T

a
1111

t
t11 =+−  ν  .              ..........(58) 

As before, we set T11 = ps
2 , and we make the similarity ansatz: 
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 Figure 6: β as a function of  log10 (η~ ).  
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                  ..........(59) 

and the force λ(t) is of the form λ = k(−t)α/2. We also non-dimensionalize to remove 
the constants ν  and σ /δ . Balance of terms in equations (5) and (58) leads to: 

1a

2

−
=α ,                                           ..........(60) 

and we find the reduced set of equations: 

( )

( ) ( ) .                               

,       

,                                     

ξξβξα

ξβξ
α

u~s~s~

0s~p~p~p~

2

3
 -

s~ks~s~p~

2a2a

22/33

′=′+

=+′+

=+

−              ..........(61) 

We can eliminate p~  from the first equation of (61) and insert into the second 

equation. In addition, we substitute s~ (ξ) = ψ(ξ)
2. This results in the equation: 

( ) ( ) 0k46k13k2
a2 =′−′+−++− ψξψβψβξψαψψψ  
 

.          ..........(62) 

We seek solutions of equation (62), which have the behavior: 

( ) ( )42
20 Oaa~

  ξξξψ ++  ,                                          ..........(63) 

near ξ = 0. After some calculation, this leads to the conditions: 

( )
( )

  
β

β

23a2

213
k

0 +−

+−
= ,                                          ..........(64) 

and 

( )
( ) 1a-

3

64

23a
1a-

0 =








−

+
  

β

β
 .                                        ..........(65) 

We now look for solutions to equation (62) which start out from a value a0 = 
ψ(0) > 3/(2k). With increasing ξ ,ψ decreases. According to (62), ψ' then becomes 
infinite when ψ = 3/(2k). At this point, ψ jumps to zero, as discussed in the previous 
section for the Giesekus model. 

We need to satisfy the integral constraint: 

[ ] 0ds~s~ =′+∫
∞

∞−

 
     ξβξα .                                   ..........(66) 

If s~  jumps to zero at a finite ξ0 , this condition reads: 
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                    ..........(67) 

Consequently, β = α = 2/(a-1). In equations  (64) and (65), this leads to: 
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 .                                        ..........(69) 

In order for a0 to be positive, we need to restrict a to be less than 7/3. In the limit a → 
7/3, a0  tends to zero, and k tends to infinity like 1/ a0

2. This means that, at the breakup 
point, the term k s~

2 is proportional to a0
2 , while the term s~

3/2  (which represents the 
surface tension force) is proportional to a0

2 < < a0
2 . We conclude that in the limit a → 

7/3,  surface tension ceases to play a role in the breakup.  

Motivated by this observation, we shall look for the possibility of breakup 
without surface tension. We therefore drop the term involving surface tension in the 
equations of motion. If we do so, there is no longer a reason why λ(t) should behave 
like (−t)α/2, and our similarity ansatz becomes: 
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         ..........(70) 

and λ(t) = (−t)γ . We obtain the equations: 

( ) ( )
( ) ( ) .                               

,       

,                                   

ξξβξα

ξβξγα

u~s~s~
0s~p~p~p~ -

ks~p~

2a2a

′=′+

=+′++

=

−              ..........(71) 

Moreover, we find the relationship: 

  
1a

1

−
−= αγ .                                          ..........(72) 

Combining the first two equations of (71) results in the equation: 

( ) 0 s~s~
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1
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
′+





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−
−   a βξα              ..........(73) 

We set k s~ = φ , and we can solve the differential equation in the form: 
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( ) ( ) βααξααφ /a221a1
C1aa221

+−−− =−+−+             ..........(74) 

We expect 2aα −2α –1 to be positive, and φ  to be a decreasing function of ξ. In this 
case C must be negative, and we may rescale ξ such that C = −1. We obtain quadratic 
behavior near ξ =0 if: 

( )    
2

1
1a −−= αβ .                                          ..........(75) 

In this case, the solution becomes: 

( ) ( )
( )1-1/ a

2
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


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=

ξ

α
ξφ .                                       ..........(76) 

Moreover, α is determined by the condition that: 

( ) ( )[ ] 0d
0

=′+∫
∞ 

 
     ξξφβξξαφ .                                  ..........(77) 

This condition leads to: 

  
4a2

1

−
=α .                                           ..........(78) 

Self-similar solutions for breakup without surface tension therefore exist for a > 2. 
However, if 2 < a < 7/3, then surface tension, if present, will affect the breakup 
asymptotics even though breakup is possible without surface tension. For details, see 
Renardy [35]. 

The mechanism for breakup without surface tension is a purely elastic one, 
related to the weakening of the jet when the stretching rate becomes high. We note that 
jet breakup involves a limit, which combines high stretching rates and large strains. 
Such a limit can be characterized neither by steady elongational viscosity nor by 
instantaneous elasticity. Indeed, the generalized PTT fluid discussed here is elongation 
thinning (in terms of steady elongational viscosity) if a > 2, but a generalized 
Newtonian fluid with the analogous power law does not show breakup without surface 
tension, see Renardy [35]. On the other hand, the instantaneous elastic behavior of the 
model considered here is equivalent to that of the Maxwell fluid, which has no 
breakup at all. 

 

4.4  Other constitutive models 

A number of other constitutive models have been investigated for similarity 
solutions, see Fontelos [37], Renardy [36]. In [36], a non-linear dumbbell model with 
the Peterlin approximation is considered. For this model, the stress is given by: 

T = f (trC) C ,                                          ..........(79) 

where the conformation tensor satisfies the evolution equation: 
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( ) ( ) ( ) 0  CCIvCCv
C

=+−−−        trf
dt

d T δκγ∇∇∇∇∇∇∇∇  .           ..........(80) 

If the spring constant f is constant, this is equivalent to the upper convected Maxwell 
model. Another popular choice is the FENE dumbbell, for which c = (tr C) has a 
maximum value c0 and: 

( )   
cc

a
~cf

0 −
,                                    ..........(81) 

as c → c0 . For this model, the breakup asymptotic is like that of the Newtonian fluid. 
We can also consider a power law, where: 

( )   1a
c~cf

− ,                                    ..........(82) 

as c → c0  , where a > 1. For this model, an analysis analogous to the generalized PTT 
model is possible. Similarity solutions were obtained in Renardy [36]. These similarity 
solutions have β = α = 2a/(a−1), and a jump of s to zero at a finite value of ξ, so the 
self-similar region occupies a fixed finite length. The possibility of breakup without 
surface tension does not arise.  

Fontelos [37] has considered the Johnson-Segalman model with a retardation 
term: 

( ) ( )[ ] SvvT   ++= T∇∇∇∇∇∇∇∇η  ,               ..........(83) 

where: 
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κ
  .          ..........(84) 

He finds Newtonian breakup if a ≤ 1/4 and purely elastic breakup with no role of 
surface tension if  1/4 < a < 1/2. For a > 1/2 there is no breakup. In [35], it is shown 
that the same results can be applied to a K-BKZ model if the strain-dependent non-
linearity behaves like a power law. 

 

5.  SELF-SIMILAR BREAKUP WITH INERTIA 

5.1  Newtonian fluid 

If inertia is retained in the equations, then equations (5) and (2) take the 
following form for a Newtonian fluid: 

Xt2
t

t u
ss

s
3

X
u =








+

∂

∂
= s  ,   

δ

σ
ηρ .                        ..........(85) 

There are now three physical constants, ρ , η and σ , which can be used to form a 
length scale l = 9η2/(ρσ) and a timescale τ = 27 η3/(ρσ2) . Since δ  has no intrinsic 
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physical meaning, we can set it equal to l and use these length and time scales for non-
dimensionalization. The resulting dimensionless equations are: 

Xt2
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s
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u =








+
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∂
= s  ,   .                         ..........(86) 

For a similarity solution, we assume the form: 
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1 .          ..........(87) 

As before, we set ( )βξ t/X −= . We note that our origin of coordinates corresponds to 

Eggers' “stagnation  point."  

Balance of inertial, viscous and surface tension terms in the momentum 
equation leads to α = 2, β = 5/2, and to the reduced equations: 
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                      ..........(88) 

At zero, these equations have a singular point. We look for solutions that are 
analytic and have the form: 

( )

( ) ...uuuu

...ssss
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++++=
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ξξξξψ

ξξξξφ
  .                           ..........(89) 

We find that s0 and u0 can be prescribed arbitrarily and the coefficients of the higher 
order terms can then be determined from the equations.  The expansion at zero breaks 
down, however, for a sequence of singular values given by: 

( )2N
0 4N5s −= .                           ..........(90) 

At infinity, we seek solutions of the form: 

( )

( ) ...bbb
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+++=
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  .                      ..........(91) 

In this series, a0 , b0 and c0  can be prescribed arbitrarily and the remaining coefficients 
can be determined from the equations. We note that the choice of exponents in 
equation (91) arises naturally by considering the left hand sides in equation (88). The 
leading terms in (91) make the left hand sides equal to zero and produce terms of 
lower order on the right hand sides. To compare with Eggers, we note that the Eulerian 
spatial position x is proportional to the integral of the stretch φ , i.e. to ξ 

1/5. The radius 
is proportional to φ−1/2 , i.e. to ξ 

2/5. Hence the radius behaves like the square of the 
spatial distance and the velocity ψ behaves like the reciprocal of the spatial distance 
{see equation (14) in Eggers [22]}. The viscous stress is proportional to ξ 

−2/5 , i.e. x−2. 
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We note that the minimum filament radius δs
−1/2 is proportional to 

( )( ) 2/1
maxt

−− φ . Hence the filament thins linearly in time. The maximum of φ is not 

at ξ = 0 (although it is actually fairly close to zero). Consequently, the location of the 
"pinch point" where the filament has minimum radius moves in space, both in the 
Lagrangian and Eulerian frame. The velocity with which this point moves is 
proportional to (−t)β −1−α = (−t) −1/2. 

Since there are two free constants in equation (91) and a general solution of 
(88) requires three initial conditions, a generic solution of (88) does not have the 
correct behavior at infinity. Using a shooting method, we can determine a curve s0 = 
f(u0) for the values at zero of those solutions which behave according to (91) as ξ → 
∞. Another curve s0 = g(u0) yields the values at zero of those solutions which have the 
correct behavior as ξ → ∞ . Because of symmetry considerations, we have g(u0) = 

f(−u0). We then need to find the intersection of these curves, i.e. the value of u0 for 
which g(u0) = f(u0).  

Eggers's similarity solution has an s0 = 119.97 slightly below the third of the 
singular values (s0

3 = 121), and the corresponding u0 is u0 = 0.785. There is an infinite 
sequence of similarity solutions with values of s0 slightly below s0

7, s0
11, s0

15, etc. 
(Brenner [24]). For generic initial data, it has been found that the solution with N = 3 is 
the one relevant for breakup. The Eggers similarity solution is highly asymmetric. 
Figure 7 shows the jet profile. 
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 Figure 7: Eggers similarity solution. 
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5.2  Giesekus fluid 

Renardy and Losh [39] have extended the analysis above to a Giesekus fluid 
with retardation. The retardation parameter ε =1/(ην) is the only dimensionless 
constant in the equations; here η and ν have the same meaning as in Section 4.2. To 
find solutions, they employed a continuation method using the Newtonian solution as a 
starting point, and then gradually increasing ε . They continued this up to ε = 20 and 
found solutions, which were qualitatively similar to the Newtonian case. The singular 
values for s0 shift to: 

( ) 2
N
0

6N5

6N52
4N5s 









+

−
+−=

ε
 ,                         ..........(92) 

and the value of s0  for the similarity solution remains slightly below the third of these 
values. I refer to Renardy [39] for details. 

 

5.3  Generalized Newtonian fluid 

For a generalized Newtonian fluid, we have the dimensionless system becomes: 
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We seek self-similar solutions of the form: 
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Substitution into equation (93) and equating coefficients of like powers of t results in: 
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.            ..........(96) 

When β < α (α > 2), the reasoning given in Renardy [36] shows that the self-similar 
region expands rather than shrinks in space as breakup is approached. Such a solution 
cannot describe breakup in a problem that has boundary conditions imposed at a finite 
length.  

Near ξ = 0, we look for analytic solutions with the series expansions: 
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As in the Newtonian case, we find that the coefficients sn and un can be determined in 
terms of s0 and u0 , except at singular values of s0  given by: 
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At s0 = σn , n = 1, 2, ... , the coefficient sn becomes infinite and logarithmic terms must 
be included in the expansion (97). 

As ξ → ∞ , φ and ψ decay to zero. The leading terms near infinity are: 
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because these make the left hand sides in equation (96) equal to zero and produce 
terms of lower order on the right hand sides. Substitution in (96) determines pn  and qn  
in terms of p0  and q0  which are arbitrary. 

In [40] a shooting method was used to find similarity solutions. The following 
results were found: 

1.  A branch continuing the Eggers solution exists for 0.3 ≤  a ≤ 1.97.  

2.  Along this branch, asymmetry decreases in both directions as a changes 
away from the Newtonian value 1. 

3. As in the case of no inertia discussed above, the jet profiles become 
cusped for small a, and U-shaped for large a. 

4. Branches of symmetric solutions exist near a =0.3 and near a = 1.97. 
Along each of these branches, s0 varies rapidly from σ2 to σ4 . At these 
end-points, the solution becomes equivalent to the inertialess solution 
after a rescaling of coordinates. 

5. The Eggers branch bifurcates from the symmetric solution near a = 0.3. 
At the upper end, on the other hand, there is a singular limit where s0 
reaches σ3 and the limiting shape remains asymmetric. 

The singular limit points of the symmetric branches provide a link between 
inertial and inertialess solution, which is not apparent in the Newtonian case. 
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